
rapid
Release v1.0

Srikanth Allu, Srdjan Simunovic, Byungkwon Park, Kai Sun, Aleksandar Dimitrovski

Oct 21, 2021

CONTENTS

1 Installation 3

2 Citing 𝑅𝐴𝑃𝐼𝐷 5

3 Collaboration 7

4 Data 9
4.1 Dynamic Data . 9
4.2 Network Data . 10

5 Modeling 13
5.1 Differential Equations . 13
5.2 Algebraic Equations . 16

6 Dynamic Simulation 19
6.1 Initial Condition Calculations . 19
6.2 Solution Approach . 22

7 Parareal Algorithm 23
7.1 Parareal Implementation . 23
7.2 Understanding of Parareal Algorithm . 24
7.3 para_real.py . 25

8 Solution Method 27
8.1 Standard Numerical Iteration Method . 27
8.2 Semi-Analytical Solution Method . 28

9 Simulation Results 45
9.1 Validation of Parareal Algorithm . 45

10 Acknowledgments 51

11 Python Files and Functions 53
11.1 Quick Start Guide . 53
11.2 Soution Approach . 53
11.3 Function Descriptions . 53
11.4 Data . 54
11.5 SAS method options . 55

12 Optimal Homotopy Analysis Method 57
12.1 Turbine Model . 58
12.2 Governor Model . 59

i

Bibliography 61

Index 63

ii

rapid, Release v1.0

This document describes an open source power system simulation toolbox: Resilient Adaptive Parallel sImulator for
griD (RAPID), a package of Python codes that implements an advanced power system dynamic simulation frame-
work. RAPID utilizes and incorporates emerging solution techniques; a novel “parallel-in-time” (Parareal) algorithm,
adaptive model reduction, and semi-analytical solution methods. Moreover, the whole simulation process for the trans-
mission network has been coupled with OpenDSS, a widely used open-source distribution system simulator, to enable
the co-simulation of integrated transmission and distribution systems. RAPID has a great potential to significantly
improve the computational performance of time-domain simulation (i.e., solving a large number of nonlinear power
system DAEs) and achieve an ambitious goal of facilitating “faster-than-real-time simulation” for predicting large-scale
power system dynamic behaviors.

CONTENTS 1

rapid, Release v1.0

2 CONTENTS

CHAPTER

ONE

INSTALLATION

• Download and install python 3.5 version

• To use MPI, please install mpi4py (https://mpi4py.readthedocs.io/en/stable/install.html)

• Install necessary Python packages (numpy, scipy, pandapower, numba).

3

https://mpi4py.readthedocs.io/en/stable/install.html

rapid, Release v1.0

4 Chapter 1. Installation

CHAPTER

TWO

CITING 𝑅𝐴𝑃𝐼𝐷

Byungkwon Park, Kai Sun, Aleksandar Dimitrovski, Yang Liu, Md Arifin Arif, Srikanth Allu, and Srdjan Simunovic,
“Performance and Feature Improvements in Parareal-based Power System Dynamic Simulation,” 2020 IEEE
International Conference on Power Systems Technology (POWERCON), Nov. 2020.
doi: 10.1109/POWERCON48463.2020.9230544
Byungkwon Park, Kai Sun, Aleksandar Dimitrovski, Yang Liu, and Srdjan Simunovic, “Examination of
Semi-Analytical Solution Methods in the Coarse Operator of Parareal Algorithm for Power System Simulation,”
IEEE Transactions on Power Systems, Nov. 2020.
doi: 10.1109/POWERCON48463.2020.9230544

5

10.1109/POWERCON48463.2020.9230544
10.1109/POWERCON48463.2020.9230544

rapid, Release v1.0

6 Chapter 2. Citing 𝑅𝐴𝑃𝐼𝐷

CHAPTER

THREE

COLLABORATION

The development team is composed of researchers from:

• Oak Ridge National Laboratory, Oak Ridge

• University of Tennessee, Knoxville

• University of Central Florida, Orlando

If you have found 𝑅𝐴𝑃𝐼𝐷 to be valuable, please feel free to contact us for potential collaborations and consider
supporting the project. Any supports and contributions from the community allow us to improve the features of this
open-source tool and investigate emerging techniques.

7

rapid, Release v1.0

8 Chapter 3. Collaboration

CHAPTER

FOUR

DATA

Two test networks, New England and Polish, are available as a small and large test network, respectively. Each test
network data contains the dynamic data and network data.

4.1 Dynamic Data

The dynamic data contains generator data (GenData), excitation data (ExcData), turbine governor data (TurbData), and
generator saturation data (satData).

• GenData: Each column in data corresponds to the following parameters
Gen. Bus 𝑋𝑑 𝑋

′

𝑑 𝑋
′′

𝑑 𝑇
′

𝑑𝑜 𝑇
′′

𝑑𝑜 𝑋𝑞 𝑋
′

𝑞 𝑋
′′

𝑞 𝑇
′

𝑞𝑜 𝑇
′′

𝑞𝑜 H D 𝑅𝑎 𝑋𝑙 𝑇𝑐 𝑓𝐵 MVA

Gen. Bus: bus number at which that generator is located
𝑋𝑑: d-axis unsaturated synchronous reactance
𝑋

′

𝑑: d-axis unsaturated transient reactance
𝑋

′′

𝑑 : d-axis unsaturated subtransient reactance
𝑇

′

𝑑𝑜: d-axis transient open circuit time constant
𝑇

′′

𝑑𝑜: d-axis subtransient open circuit time constant
𝑋𝑞: q-axis unsaturated transient reactance
𝑋

′

𝑞: q-axis unsaturated transient reactance
𝑋

′′

𝑞 : q-axis unsaturated subtransient reactance
𝑇

′

𝑞𝑜: q-axis transient open circuit time constant
𝑇

′′

𝑞𝑜: q-axis subtransient open circuit time constant
H: generator inertia
D: generator damping constant
𝑅𝑎: stator resistance per phase
𝑋𝑙: stator leakage reactance per phase
𝑇𝑐: the open circuit time constant of the dummy coil, usually set to 0.01 s
𝑓𝐵 : nominal frequency of the rotor of the generator (Hz)
MVA: generator MVA

• ExcData
𝐾𝐴 𝑇𝐴 𝐾𝐸 𝑇𝐸 𝐾𝐹 𝑇𝐹 𝐴𝐸 𝐵𝐸 VRmax VRmin 𝑇𝑅

9

rapid, Release v1.0

𝐾𝐴: voltage regulator gain
𝑇𝐴: voltage regulator time constant
𝐾𝐸 : exciter constant related to self-excited field
𝑇𝐸 : exciter time constant, integration rate associated with exciter control
𝐾𝐹 : excitation control system stabilizer gains
𝑇𝐹 : excitation control system stabilizer time constant
𝐴𝐸 : IEEE Type-1 exciter saturation function related constant
𝐵𝐸 : IEEE Type-1 exciter saturation function related constant
VRmax: maximum voltage regulator outputs
VRmin: minimum voltage regulator outputs
𝑇𝑅: filter time constant

• TurbData
𝑇𝐶𝐻 𝑅𝐷 𝑇𝑆𝑉 Psvmax Psvmin

𝑇𝐶𝐻 : Turbine time constant
𝑅𝐷: Droop constant
𝑇𝑆𝑉 : Governor time constant
Psvmax: Maximum governor set point
Psvmin: Minimum governor set point

• satData
Gen. Bus siTd siaT1 siaTu1 siaT2 siaTu2 siTq siaT1 siaTu1 siaT2 siaTu2

Gen. Bus: bus number at which that generator is located
siTd, siaT1, siaTu1, siaT2, siaTu2: d-axis saturation data
siTq, siaT1, siaTu1, siaT2, siaTu2: q-axis saturation data

4.2 Network Data

The network data contains the network information (mpc) which follows the format of MATPOWER [ZMST11], which
is used to construct the admittance matrix (𝑌𝑏𝑢𝑠) and solve the power flow problem. The system structure is specified
by two tables, bus and branch.

• Bus (mpc.bus)
Bus Type 𝑃𝑑 𝑄𝑑 𝐺𝑠 𝐵𝑠 Area 𝑉𝑚 𝑉𝑎 BaseKV Zone Vmax Vmin

Bus: Bus number
Type: Bus type (1 = PQ, 2 = PV, 3 = ref, 4 = isolated)
𝑃𝑑: d-axis unsaturated transient reactance
𝑄𝑑: real power demand (MW)
𝐺𝑠: shunt conductance (MW demanded at V = 1.0 p.u.)
𝐵𝑠: shunt susceptance (MVAr injected at V = 1.0 p.u.)
Area: area number

10 Chapter 4. Data

rapid, Release v1.0

𝑉𝑚: voltage magnitude (p.u.)
𝑉𝑎: voltage angle (degrees)
BaseKV: base voltage (kV)
Zone: loss zone (positive integer)
Vmax: maximum voltage magnitude (p.u.)
Vmin: minimum voltage magnitude (p.u.)

• Branch (mpc.branch)
𝐹𝐵𝑈𝑆 𝑇𝐵𝑈𝑆 𝐵𝑅𝑅 𝐵𝑅𝑋 𝐵𝑅𝐵 Rate𝐴 Rate𝐵 Rate𝐶 TAP SHIFT BR𝑆𝑇𝐴𝑇𝑈𝑆 ANGMIN ANGMAX

𝐹𝐵𝑈𝑆 : “from” bus number
𝑇𝐵𝑈𝑆 : “to” bus number
𝐵𝑅𝑅: resistance (p.u.)
𝐵𝑅𝑋 : reactance (p.u.)
𝐵𝑅𝐵 : total line charging susceptance (p.u.)
Rate𝐴: MVA rating A (long term rating)
Rate𝐵 : MVA rating B (short term rating)
Rate𝐶 : MVA rating C (emergency rating)
TAP: transformer off nominal turns ratio, if non-zero (taps at “from” bus, impedance at “to” bus, i.e. if
𝑟 = 𝑥 = 𝑏 = 0, tap = |𝑉𝑓 |

|𝑉𝑡| ; tap = 0 used to indicate transmission line rather than transformer, i.e.
mathematically equivalent to transformer with tap = 1)
SHIFT: transformer phase shift angle (degrees), positive ⇒ delay
BR𝑆𝑇𝐴𝑇𝑈𝑆 : initial branch status, 1 = in-service, 0 = out-of-service
ANGMIN: minimum angle difference, 𝜃𝑓 − 𝜃𝑡 (degrees)
ANGMAX: maximum angle difference, 𝜃𝑓 − 𝜃𝑡 (degrees)

• Generator (mpc.gen)
𝐺𝐸𝑁𝐵𝑈𝑆 𝑃𝐺 𝑄𝐺 Qmax Qmin 𝑉𝐺 MBASE GEN𝑆𝑇𝐴𝑇𝑈𝑆 Pmax Pmin PC1 PC2 QC1MIN QC1MAX
QC2MIN QC2MAX RAMP𝐴𝐺𝐶 RAMP10 RAMP30 RAMP𝑄 APF

𝐺𝐸𝑁𝐵𝑈𝑆 : bus number
𝑃𝐺: real power output (MW)
𝑄𝐺: reactive power output (MVAr)
Qmax: maximum reactive power output (MVAr)
Qmin: minimum reactive power output (MVAr)
𝑉𝐺: voltage magnitude setpoint (p.u.)
MBASE: total MVA base of machine, defaults to baseMVA
GEN𝑆𝑇𝐴𝑇𝑈𝑆 : machine status: > 0 = machine in-service, ≤ 0 = machine out-of-service
Pmax: maximum real power output (MW)
Pmin: minimum real power output (MW)
PC1: lower real power output of PQ capability curve (MW)
PC2: upper real power output of PQ capability curve (MW)
QC1MIN: minimum reactive power output at PC1 (MVAr)
QC1MAX: maximum reactive power output at PC1 (MVAr)
QC2MIN: minimum reactive power output at PC2 (MVAr)

4.2. Network Data 11

rapid, Release v1.0

QC2MAX: maximum reactive power output at PC2 (MVAr)
RAMP𝐴𝐺𝐶 : ramp rate for load following/AGC (MW/min)
RAMP10: ramp rate for 10 minute reserves (MW)
RAMP30: ramp rate for 30 minute reserves (MW)
RAMP𝑄: ramp rate for reactive power (2 sec timescale) (MVAr/min)
APF: area participation factor

12 Chapter 4. Data

CHAPTER

FIVE

MODELING

𝑅𝐴𝑃𝐼𝐷 employs the standard dynamic models used for power system transient and dynamic simulations. The first
version of PAPID incorporates the dummy coil model [Pad02]. The analysis of transient stability of power systems
involves the computation of the nonlinear dynamic response to disturbances (typically a transmission network fault)
followed by the isolation of the faulted element by protective relaying. The resulting formulation consists of a large
number of ordinary differential and algebraic equations (DAEs), which may be represented as:

�̇�𝑥𝑥 = 𝑓(𝑥, 𝑉)𝑓(𝑥, 𝑉)𝑓(𝑥, 𝑉)

𝐼𝐼𝐼 = 𝑔(𝑥, 𝑉)𝑔(𝑥, 𝑉)𝑔(𝑥, 𝑉)

where 𝑥𝑥𝑥 is the state vector of the system; 𝐼𝐼𝐼 is the current injection vector in the network frame; 𝑉𝑉𝑉 is the bus voltage
vector in the network frame; 𝑓𝑓𝑓 and 𝑔𝑔𝑔 represent differential and algebraic equation vector, respectively.

The differential equations include the synchronous generators (2.2 model) [Dan03], and the associated control systems
(e.g., excitation and prime mover governors). The algebraic equations include the stator algebraic equations (including
axes transformation) and the network equations.

5.1 Differential Equations

This section illustrates IEEE Model 2.2 with two damper windings on the q-axis and one damper winding on the
d-axis along with the field winding for the synchronous generators, IEEE Type 1 excitation system, and first order
turbine-governor models. Saturation is represented using standard saturation factors approach [KBL94]. The dummy
coil approach [Pad02] is used to interface the generator to the network as a current source. Loads are modelled as
aggregate static loads employing polynomial representation (ZIP load). The complete model has 15 state variables for
each generator including all the controls.

13

rapid, Release v1.0

5.1.1 Synchronous Generator Model 2.2

�̇� = 𝜔𝐵𝜔

�̇� =
1

2𝐻
(𝑇𝑚 − 𝑇𝑒 −𝐷𝜔)

𝜓𝑓 = −𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓 +
𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑

�̇�ℎ = −𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓ℎ +
𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

�̇�𝑔 = −𝜔𝐵𝑅𝑔
𝑋𝑓𝑙

𝜓𝑔 +
𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

�̇�𝑘 = −𝜔𝐵𝑅𝑘
𝑋𝑓𝑙

𝜓𝑘 +
𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

�̇�dum =
1

𝑇 dum

(︁
− 𝐸dum − (𝑋

′′

𝑞𝑠 −𝑋
′′

𝑑𝑠)𝑖𝑞

)︁
�̇�

′′

𝑎𝑑 =
1

𝑇𝑑
(−𝑋

′′

𝑎𝑑 + 𝐹𝑑)

�̇�
′′

𝑎𝑞 =
1

𝑇𝑞
(−𝑋

′′

𝑎𝑞 + 𝐹𝑞)

where 𝛿 is the rotor angle; 𝜔 is the slip speed; 𝜓𝑓 , 𝜓ℎ are the d-axis flux linkages; 𝜓𝑔, 𝜓𝑘 are the q-axis flux linkages;
𝐸dum is a dummy coil state variable for transient saliency inclusion;𝑋 ′′

𝑎𝑑, 𝑋
′′

𝑎𝑞 are dummy states of machine reactances
representing the fast acting differential equations to avoid nonlinear algebraic equations of generator source currents,
which are functions of machine reactances 𝑋 ′′

𝑎𝑑, 𝑋
′′

𝑎𝑞 .

5.1.2 Turbine Governor

�̇�𝑚 =
1

𝑇𝑐ℎ
(−𝑇𝑚 + 𝑃𝑠𝑣)

�̇�𝑠𝑣 =
1

𝑇𝑠𝑣
(−𝑃𝑠𝑣 + 𝑃𝑐 −

1

𝑅𝑑
𝜔)

where 𝑇𝑚 represents the mechanical torque; 𝑃𝑠𝑣 represents the turbine valve opening; 𝑃𝑐 is the power command.

5.1.3 IEEE Type-1 Excitation

�̇�𝑓𝑑 =
1

𝑇𝐸
(−[𝐾𝐸 +𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑)]𝐸𝑓𝑑 + 𝑉𝑅)

�̇�2 =
1

𝑇𝐹
(−𝑉2 +

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑)

�̇�1 =
1

𝑇𝑅
(−𝑉1 + 𝑉𝑇)

�̇�𝑅 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

set 𝑉𝑅 = 𝑉 max
𝑅 if 𝑉𝑅 > 𝑉 max

𝑅

0 if 𝑉𝑅 = 𝑉 max
𝑅 and 𝐹𝑅 > 0

set 𝑉𝑅 = 𝑉 min
𝑅 if 𝑉𝑅 < 𝑉 min

𝑅

0 if 𝑉𝑅 = 𝑉 min
𝑅 and 𝐹𝑅 < 0

1
𝑇𝐴

(︁
− 𝑉𝑅 +𝐾𝐴

(︀
𝑉 ref − 𝑉1 − (𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑 − 𝑉2)

)︀)︁
Otherwise

14 Chapter 5. Modeling

rapid, Release v1.0

where𝐸𝑓𝑑 is the field voltage; 𝑉2 is the feedback voltage; 𝑉1 is the sensed terminal voltage; 𝑉𝑅 is the regulator voltage;
𝑉𝑇 is the terminal voltage of generator. That is, 𝑉𝑇 = |𝑉𝑏𝑢𝑠|. Here, 𝐹𝑅 represents

(︁
−𝑉𝑅+𝐾𝐴

(︀
𝑉 ref−𝑉1−(𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑−

𝑉2)
)︀)︁

.

5.1.4 Load Dynamic

𝐼𝐿𝑟 =
1

𝑇𝐿𝑟
(−𝐼𝐿𝑟 + 𝐹𝑟)

𝐼𝐿𝑖 =
1

𝑇𝐿𝑖
(−𝐼𝐿𝑖 + 𝐹𝑖)

In this differential equation, the non-linear algebraic equations are converted into a combination of fast acting differ-
ential equations and linear algebraic equations. The algebraic equations are functions of the “dummy” states of the
fast acting differential equations. The time constants 𝑇𝐿𝑟,𝐿𝑖 are chosen to be small, which implies that 𝐼𝐿𝑑/𝐿𝑖 ≈ 𝐹𝑟,𝑖,
except for a short while after a disturbance.

Similar to the dummy coil approach, this is an approximate treatment, but the degree of approximation can be controlled
directly by choosing 𝑇𝐿𝑟,𝐿𝑖 appropriately. It is found that reasonable accuracy can be obtained if 𝑇𝐿𝑟,𝐿𝑖 is about 0.01𝑠.
The main advantage of this method is its simplicity and modularity. Fig. 5.1. represents the structure of the synchronous
generator model which describes the aforementioned differential equations.

Fig. 5.1: Synchronous generator model with relevant controllers

Further details regarding the derivation of models can be found in [Pad08]. Notice that the power system stabilizer is
not included in this version.

5.1. Differential Equations 15

rapid, Release v1.0

5.2 Algebraic Equations

By neglecting stator transients, the stator quantities contain only fundamental frequnecy component and the stator
voltage equations appear as algebraic equations. With this, the use of steady-state relationships for representing the
interconnecting transmission network is allowed. The neglection of stator transients together with network transients is
necessary for stability analysis of practical power systems consisting of thousands of buses and hundreds of generators.

5.2.1 Stator Algebraic Equation

𝐸
′′

𝑞 = 𝑋
′′

𝑎𝑑

(︁ 𝜓𝑓
𝑋𝑓𝑙

+
𝜓ℎ
𝑋ℎ𝑙

)︁
𝐸

′′

𝑑 = −𝑋
′′

𝑎𝑞

(︁ 𝜓𝑔
𝑋𝑔𝑙

+
𝜓𝑘
𝑋𝑘𝑙

)︁
𝑋

′′

𝑞 = 𝑋
′′

𝑎𝑞 +𝑋𝑙

𝑋
′′

𝑑 = 𝑋
′′

𝑎𝑑 +𝑋𝑙

𝑣𝑞 + 𝑗𝑣𝑑 = (𝑉𝑞 + 𝑗𝑉𝑑)𝑒
−𝑗𝛿[︂

𝑖𝑞
𝑖𝑑

]︂
=

1

𝑅2
𝑎 +𝑋

′′
𝑑𝑋

′′
𝑞

[︂
𝑅𝑎 𝑋

′′

𝑑

−𝑋 ′′

𝑞 𝑅𝑎

]︂ [︂
𝐸

′′

𝑞 − 𝑣𝑞
𝐸

′′

𝑑 − 𝑣𝑑

]︂
𝑇𝑒 = 𝐸

′′

𝑞 𝑖𝑞 + 𝐸
′′

𝑑 𝑖𝑑 + (𝑋
′′

𝑎𝑑 −𝑋
′′

𝑎𝑞)𝑖𝑑𝑖𝑞

𝜓𝑎𝑑 = 𝑋
′′

𝑎𝑑𝑖𝑑 + 𝐸
′′

𝑞

𝜓𝑎𝑞 = 𝑋
′′

𝑎𝑞𝑖𝑞 − 𝐸
′′

𝑑

𝜓𝑎𝑡 = (𝑉𝑞 + 𝑗𝑉𝑑) + (𝑅𝑎 + 𝑗𝑋𝑙)(𝑖𝑞 + 𝑗𝑖𝑑)

𝜓𝐼𝑑 = 𝐴𝑠𝑑𝑒
𝐵𝑠𝑑(𝜓𝑎𝑡−𝜓𝑇𝑑)

𝜓𝐼𝑞 = 𝐴𝑠𝑞𝑒
𝐵𝑠𝑞(𝜓𝑎𝑡−𝜓𝑇𝑞)

𝐾𝑠𝑑 =
𝜓𝑎𝑡

𝜓𝑎𝑡 + 𝜓𝐼𝑑

𝐾𝑠𝑞 =
𝜓𝑎𝑡

𝜓𝑎𝑡 + 𝜓𝐼𝑞

𝑋𝑎𝑑𝑠 = 𝐾𝑠𝑑𝑋𝑎𝑑

𝑋𝑎𝑞𝑠 = 𝐾𝑠𝑞𝑋𝑎𝑞

𝐹𝑑 =
1

1
𝑋𝑎𝑑𝑠

+ 1
𝑋𝑓𝑙

+ 1
𝑋ℎ𝑙

= 𝑋
′′

𝑎𝑑

𝐹𝑞 =
1

1
𝑋𝑎𝑞𝑠

+ 1
𝑋𝑔𝑙

+ 1
𝑋𝑘𝑙

= 𝑋
′′

𝑎𝑞

where 𝐸′′

𝑞 , 𝐸
′′

𝑑 are the q-axis and d-axis subtransient voltage; 𝑋 ′′

𝑞 , 𝑋
′′

𝑑 are the saturated q-axis and d-axis subtransient
reactance; 𝑇𝑒 is the electrical torque; 𝜓𝑎𝑑, 𝜓𝑎𝑞 are the d-axis and q-axis component of mutual flux linkage; 𝜓𝑎𝑡 is the
saturated value of resultant air-gap flux linkages; 𝐾𝑠𝑞 , 𝐾𝑠𝑑 are the q-axis and d-axis saturation factor; 𝑋𝑎𝑑, 𝑋𝑎𝑞 are
the unsaturated d-axis and q-axis mutual synchronous reactance; 𝑋𝑎𝑑𝑠, 𝑋𝑎𝑞𝑠 are the saturated value of 𝑋𝑎𝑑, 𝑋𝑎𝑞 .

16 Chapter 5. Modeling

rapid, Release v1.0

5.2.2 Network Algebraic Equation

Since the time constants of these elements are relatively small compared to the mechanical time constants, the network
transients are neglected and the network is assumed to be in sinusoidal steady state. Using the 𝑌𝑏𝑢𝑠 matrix, the bus
voltage can be obtained with the current injections from load and generation buses.

𝐼𝑏𝑢𝑠 = 𝐼𝐿𝑟 + j𝐼𝐿𝑖 for load buses

𝐼𝑏𝑢𝑠 = 𝐼𝑞 + 𝑗𝐼𝑑 =
𝐸

′′

𝑞 + 𝑗(𝐸
′′

𝑞 + 𝐸dummy)

𝑅𝑎 + 𝑗𝑋
′′
𝑑

𝑒𝑗𝛿 for generator buses

𝑉𝑏𝑢𝑠 = 𝑌 −1
𝑏𝑢𝑠𝐼𝑏𝑢𝑠

5.2.3 Load Algebraic Equation

𝑌𝐿 =
𝑃𝐿0 − 𝑗𝑄𝐿0

𝑉 2
0

𝑃𝐿 = 𝑎1𝑃𝐿0 + 𝑎2

(︁𝑃𝐿0
𝑉0

)︁
𝑉 + 𝑎3

(︁𝑃𝐿0
𝑉 2
0

)︁
𝑉 2

𝑄𝐿 = 𝑏1𝑄𝐿0 + 𝑏2

(︁𝑄𝐿0
𝑉0

)︁
𝑉 + 𝑏3

(︁𝑄𝐿0
𝑉 2
0

)︁
𝑉 2

𝑆𝐿 = 𝑃𝐿 + 𝑗𝑄𝐿

𝐼𝐿 = 𝑉 𝑌𝐿 −
(︁𝑆𝐿
𝑉

)︁*

𝐹𝑟 = 𝑟𝑒𝑎𝑙(𝐼𝐿)

𝐹𝑖 = 𝑖𝑚𝑎𝑔(𝐼𝐿)

where 𝑉0 is the nominal load bus voltage magnitude; 𝐼𝐿 in general represents load currents, which is related to load
power; 𝑃𝐿0, 𝑄𝐿0 are nominal values of active and reactive components of load powers at nomial voltage 𝑉0; The
coefficients 𝑎1, 𝑎2 and 𝑎3 are the fractions of the constant power, constant current and constant impedance components
in the active load powers, respectively. Similarly, the coefficients 𝑏1, 𝑏2 and 𝑏3 are defined for reactive load powers.

It should be noted that 𝑎1 + 𝑎2 + 𝑎3 = 1 and 𝑏1 + 𝑏2 + 𝑏3 = 1. Also notice that the active and reactive components of
load powers are represented separately as static voltage dependent models. As illustrated before, the values of 𝐹𝑟 and
𝐹𝑖 are substituted in the load dynamic equation to avoid the iterative solution. Similarly, further details regarding the
derivation can be found in [Pad08]. The example of the IEEE New England test network is shown in Fig. 5.2.

5.2. Algebraic Equations 17

rapid, Release v1.0

Fig. 5.2: Example of the New England test network: 39-bus and 10-generator

18 Chapter 5. Modeling

CHAPTER

SIX

DYNAMIC SIMULATION

This section describes the procedures and solution approach for performing power system dynamic simulations.

6.1 Initial Condition Calculations

To start the dynamic simulations, the calculation of initial conditions requires the solution of the power flow problem
which obtains a set of feasible steady-state system conditions. From the power flow analysis, the power output of
generator and bus voltage phasor can be obtained.

6.1.1 Synchronous Generator Initial Conditions

• The calculation of unsaturated parameters: First, we derive the value of other parameters with given parameters
(e.g., subtransient and transient inductance). The derived parameters include
[𝑋𝑎𝑑, 𝑋𝑎𝑞, 𝑋𝑓𝑙, 𝑋ℎ𝑙, 𝑅𝑓 , 𝑅ℎ, 𝑋𝑔𝑙, 𝑋𝑘𝑙,

R𝑔, 𝑅𝑘].

• The calculation of saturation: From the power flow solution, one obtains the bus voltage (𝑉𝑔,0), current (𝐼𝑔,0)
and power (𝑃𝑔,0/𝑄𝑔,0) at the generator buses. With this, obtain the air-gap voltage as 𝐸air = 𝑉𝑔,0 + 𝑗𝑋𝑙𝐼𝑔,0.
Then, using saturation parameters (satData), calculate the saturation coefficient 𝐾𝑠𝑑,𝐾𝑠𝑞 . Finally, update the
derived parameters to appropriately reflect the saturation effect as follows:

𝑋𝑎𝑑 = 𝐾𝑠𝑑𝑋𝑎𝑑𝑠

𝑋𝑎𝑞 = 𝐾𝑠𝑞𝑋𝑎𝑞𝑠

𝑋𝑑 = 𝑋𝑎𝑑 +𝑋𝑙

𝑋𝑞 = 𝑋𝑎𝑞 +𝑋𝑙

𝑋
′′

𝑎𝑑 =
1

1
𝑋𝑎𝑑

+ 1
𝑋𝑓𝑙

+ 1
𝑋ℎ𝑙

𝑋
′′

𝑎𝑞 =
1

1
𝑋𝑎𝑞

+ 1
𝑋𝑔𝑙

+ 1
𝑋𝑘𝑙

𝑋
′′

𝑑𝑠 = 𝑋
′′

𝑎𝑑 +𝑋𝑙

𝑋
′′

𝑞𝑠 = 𝑋
′′

𝑎𝑞 +𝑋𝑙

• The calculation of initial values for state variables:

Compute:

19

rapid, Release v1.0

𝐸𝑞 = 𝑉𝑔,0 + j𝑋𝑞𝐼𝑔,0

𝛿0 = ∠𝐸𝑞

𝑖𝑞 + j𝑖𝑑 = 𝐼𝑔,0𝑒
−j𝛿0

𝑣𝑞 + j𝑣𝑑 = 𝑉𝑔,0𝑒
−j𝛿0

𝜓𝑑 = 𝑣𝑞

𝜓𝑑 = −𝑣𝑑

𝑖𝑓,0 =
𝜓𝑑 −𝑋𝑑𝑖𝑑

𝑋𝑎𝑑

𝐸𝑓𝑑,0 = 𝑋𝑎𝑑𝑠𝑖𝑓,0

𝜓𝑎𝑑 = 𝜓𝑑 −𝑋𝑙𝑖𝑑

𝜓𝑎𝑞 = 𝜓𝑞 −𝑋𝑙𝑖𝑞

𝜓𝑓,0 = 𝜓𝑎𝑑 +
𝑋𝑓𝑙

𝑋𝑎𝑑𝑠
𝐸𝑓𝑑,0

𝜓ℎ,0 = 𝜓𝑎𝑑

𝜓𝑔,0 = 𝜓𝑎𝑞

𝜓𝑘,0 = 𝜓𝑎𝑞

𝑇𝑚,0 = 𝑃𝑔,0

𝐸
′′

𝑞 = 𝑋
′′

𝑎𝑑

(︁ 𝜓𝑓
𝑋𝑓𝑙

+
𝜓ℎ
𝑋ℎ𝑙

)︁
𝐸

′′

𝑑 = −𝑋
′′

𝑎𝑑

(︁ 𝜓𝑔
𝑋𝑔𝑙

+
𝜓𝑘
𝑋𝑘𝑙

)︁
𝑇𝑚0 = 𝐸

′′

𝑞 𝑖𝑞 + 𝐸
′′

𝑑 𝑖𝑑 + 𝑖𝑑𝑖𝑞(𝑋
′′

𝑎𝑑 −𝑋
′′

𝑎𝑞)

20 Chapter 6. Dynamic Simulation

rapid, Release v1.0

𝐸dum
0 = −(𝑋

′′

𝑞 −𝑋
′′

𝑑)𝑖𝑞

𝑌𝑏𝑢𝑠(𝑔𝑒𝑛, 𝑔𝑒𝑛) = 𝑌𝑏𝑢𝑠(𝑔𝑒𝑛, 𝑔𝑒𝑛) +
1

𝑅𝑎(𝑔𝑒𝑛) + j𝑋 ′′
𝑑 (𝑔𝑒𝑛)

𝑌𝑏𝑢𝑠(𝑙𝑜𝑎𝑑, 𝑙𝑜𝑎𝑑) = 𝑌𝑏𝑢𝑠(𝑙𝑜𝑎𝑑, 𝑙𝑜𝑎𝑑) +
𝑃𝐿0(𝑙𝑜𝑎𝑑) − j𝑄𝐿0(𝑙𝑜𝑎𝑑)

|𝑉 (𝑙𝑜𝑎𝑑)|2

Then, setting 𝜔0 = 0, 𝑋
′′

𝑎𝑑0 = 𝑋
′′

𝑎𝑑, 𝑋
′′

𝑎𝑞0 = 𝑋
′′

𝑎𝑞 , we obtain 𝑋0 = [𝛿0, 𝜔0, 𝜓𝑓0, 𝜓ℎ0, 𝜓𝑔0,

𝜓𝑘0, 𝐸
dum
0 , 𝑋

′′

𝑎𝑑0, 𝑋
′′

𝑎𝑞0]. Also, one can obtain 𝐸𝑓𝑑0, 𝑇𝑚0.

6.1.2 Excitation System Initial Conditions

• The calculation of initial values for state variables: With 𝑉𝑔0, 𝐸𝑓𝑑0 from generator initial conditions and exciter
parameters, compute:

𝑉2,0 =
𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,0

𝑉1,0 = |𝑉𝑔,0|
𝑉𝑅𝑅 = (𝐾𝐸 +𝐴𝐸𝑒

𝐵𝐸𝐸𝑓𝑑,0)𝐸𝑓𝑑,0

𝑉𝑅,0 = 𝐾𝐴

(︀𝑉𝑅𝑅
𝐾𝐴

− 𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,0 − 𝑉2,0

)︀

6.1.3 Governor Initial Conditions

The 𝑇𝑚,0 becomes the governor set point (i.e. 𝑇𝑚,0 = 𝑃𝑐 = 𝑃𝑠𝑣,0) and is the input for the initial condition of turbine.

6.1.4 Turbine Initial Conditions

Here, simply 𝑇𝑚,0 = 𝑃𝑠𝑣,0.

6.1. Initial Condition Calculations 21

rapid, Release v1.0

6.2 Solution Approach

There are basically two approaches used in power system simulation packages. One approach, called partitioned-
explicit (PE) solution, solves the differential and the algebraic equations separately in an alternating manner. The
second approach solves the differential equations along with the algebraic equations simultaneously.

• Partitioned-explicit (PE) method

• Simultaneous-implicit (SI) method

The PE approach with explicit integration is the traditional approach used widely in production-grade stability pro-
grams. Therefore, we only focus on the partitioned solution approach with an explicit integration method. Initially, at
𝑡 = 0, the values of the state variable and the algebraic variables are known, and the system is in steady state and the
time derivatives 𝑓𝑓𝑓 are zero.

Following a disturbance, the state variable 𝑥𝑥𝑥 cannot change instantly, whereas the algebraic variables can change in-
stantaneously. Therefore, the algebraic equations are solved solved first to give 𝑉𝑉𝑉 𝑏𝑢𝑠 and 𝐼𝐼𝐼𝑏𝑢𝑠, and other non-state
variables of interest at 𝑡 = 0+. Then, the 𝑓𝑓𝑓 is computed by using the known values of 𝑥𝑥𝑥 and 𝑉𝑉𝑉 𝑏𝑢𝑠. We illustrate this
process based on the fourth order Runge-Kutta (RK-4) method.

• Step 1: Incorporate the system disturbance and solve for 𝑉 (0+), 𝐼(0+).

• Step 2: Using the value of 𝑉 (0+), 𝐼(0+), integrate the differential equations to obtain 𝑘1.

• Step 3: Then, algebraic equaiotns are solved with 𝑘1 and 𝑉 (0+), 𝐼(0+) to compute 𝑉 (0+)1, 𝐼(0+)1.

• Step 4: Using the value of 𝑉 (0+)1, 𝐼(0+)1, integrate the differential equations to obtain 𝑘2, and this is applied
successively until 𝑘4 and 𝑉 (0+)4, 𝐼(0+)4.

• Step 5: Update the solution 𝑥1 = 𝑥0 + 1
6 (𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4).

• Step 6: Go to Step 1 and solve for 𝑉 (1), 𝐼(1) from the algebraic equations.

The advantages of the partitioned approach with explicit integration are programming flexibility, and simplicity, relia-
bility, and robustness. Its disadvantage is numerical instability.

22 Chapter 6. Dynamic Simulation

CHAPTER

SEVEN

PARAREAL ALGORITHM

To implement the aforementioned partitioned-explicit solution process, which is widely applied in power system com-
mercial simulation softwares, 𝑅𝐴𝑃𝐼𝐷 employs the Parareal algorithm [G+16] that belongs to the class of temporal
decomposition methods and can highly utilize high-performance parallel computing platforms. It has become popular
in recent years for long time transient simulations and demonstrated its potential to reduce the wall-clock time of the
simulations significantly, which is crucial for “faster than real-time simulations.” In a simplified way, the Parareal algo-
rithm decomposes the whole simulation period into smaller time intervals such that the evolution of each independent
sub-interval is carried out in parallel and completed after a number of iterations between a coarse approximate solution
and a fine true solution over the entire period. Its computational performance is heavily dependent on the number of
iterations, and for fast convergence, it is crucial to select the coarse operator that is reasonably accurate and fast.

To solve these sub-intervals independently, initial states for all sub-intervals are required, which are provided by a less
accurate but computationally cheap numerical integration method (coarse operator). The more accurate but computa-
tionally expensive numerical integration method (fine operator) is then used to correct the evolution of each independent
sub-interval in parallel. As an example, consider an initial value problem of the form:

�̇� = 𝑓(𝑥, 𝑡)

𝑥(𝑡0) = 𝑥0 with 𝑡0 ≤ 𝑡 ≤ 𝑇

Then, it divides the time interval [𝑡0, 𝑇] into 𝑁 sub-intervals [𝑡𝑗 , 𝑡𝑗+1] such that [𝑡0, 𝑇] = [𝑡0, 𝑡1] ∪ [𝑡1, 𝑡2] ∪ . . . ∪
[𝑡𝑁−1, 𝑡𝑁]. For simplicity, assume that the size of 𝑡𝑛+1 − 𝑡𝑛 = ∆𝑇𝑛 is equivalent to each other for all 0 ≤ 𝑛 < 𝑁
(i.e., ∆𝑇 = ∆𝑇𝑛).

7.1 Parareal Implementation

The following steps roughly describe the standard Parareal implementation. Denote 𝑥fine and 𝑥coarse as the system states
obtained from fine operator and coarse operator, respectively. 𝑥* is used to denote the corrected coarse solution.

1. Define two numerical operators, Fine and Coarse, using time steps 𝛿𝑡 and ∆𝑡, respectively from initial state 𝑥𝑛−1

at time 𝑡𝑛−1.

𝐹𝑖𝑛𝑒 : 𝑥fine
𝑛 = 𝐹𝛿𝑡(𝑡𝑛−1, 𝑥𝑛−1)

𝐶𝑜𝑎𝑟𝑠𝑒 : 𝑥coarse
𝑛 = 𝐶Δ𝑡(𝑡𝑛−1, 𝑥𝑛−1)

2. Generate an initial coarse solution using the coarse operator in serial

𝑥*,0𝑛 = 𝑥coarse,0
𝑛 = 𝐶Δ𝑡(𝑥

*,0
𝑛−1) 𝑛 = [1, , , ., 𝑁]

Set 𝑥*,10 = 𝑥*,00

where the superscript denotes the iteration count and 𝑥*,00 is the given initial point at 𝑇 = 0.

23

rapid, Release v1.0

3. Iteration starts 𝑘 = 1. Propagate fine solution in parallel over each time sub-intervals [𝑇𝑛−1, 𝑇𝑛) using the find
operator

𝑥fine,𝑘
𝑛 = 𝐹𝛿𝑡(𝑥

*,𝑘−1
𝑛−1) 𝑛 = [1, , , ., 𝑁]

where 𝑥fine,𝑘
𝑛 denotes the solution at 𝑡𝑛.

4. Update the coarse solution in serial

for 𝑛 = 𝑘 : 𝑁

𝑥coarse,𝑘
𝑛 = 𝐶Δ𝑡(𝑥

*,𝑘
𝑛−1)

𝑥*,𝑘𝑛 = 𝑥coarse,𝑘
𝑛 + 𝑥fine,𝑘

𝑛 − 𝑥coarse,𝑘−1
𝑛

𝑒𝑛𝑑

5. Go to Step 3 and update the coarse solution iteratively until 𝑥*,𝑘𝑛 − 𝑥*,𝑘−1
𝑛 ≤ 𝑡𝑜𝑙 for 𝑛 = [1, , , ., 𝑁].

7.2 Understanding of Parareal Algorithm

To understand the behavior of this algorithm, consider the updated coarse solution at n = 1 after the first iteration (k = 1);
that is, 𝑥*,11 = 𝑥coarse,1

1 +𝑥fine,1
1 −𝑥coarse,0

1 . Notice that the updates coarse solution at t1 is corrected to the fine solution as
𝑥*,11 = 𝑥fine,1

1 since 𝑥coarse,1
1 = 𝑥coarse,0

1 . Therefore, all the coarse values should be corrected to fine values (true solution)
in 𝑁 iterations. This is same as the fine operator is applied sequentially for all 𝑁 intervals. Thus, the speedup can be
obtained only if the Parareal iteration 𝑘 is less than 𝑁 . That is, 𝑘 < 𝑁 . This means that the ideal speed up of Parareal
is 𝑁𝑘 assuming inexpensive coarse solver and other factors related to the parallelization are negligible. In addition, note
that Step 4 updates the coarse solution at 𝑡𝑛 from 𝑘 to 𝑁 since the updated coarse solutions 𝑥*1, 𝑥*2, ..., 𝑥*𝑘−1 have been
corrected to the true solutions in 𝑘 iterations.

One can consider many different ways to construct the coarse operator, and common approaches are: 1) the use of a
larger time step than the fine operator, 2) the use of a different, but faster solver than that of the fine operator, and 3)
the use of a simpler or reduced system model based on the properties of the underlying physics governing the behavior
of the system. The graphical structure of the Parareal algorithm is illustrated in Fig. 7.1.

Fig. 7.1: Parareal algorithm

For the Parareal algorithm, this toolbox employs the distributed Parareal algorithm [Aub11] that considers the efficient
scheduling of tasks, which is an improved version of the usual Parareal algorithm from a practical perspective. In the

24 Chapter 7. Parareal Algorithm

rapid, Release v1.0

distributed algorithm, the coarse propagation is also distributed across all processors, which enables overlap between
the sequential and parallel portions and mitigates the memory requirement for processors.

To evaluate the computational efficiency of Parareal algorithm, one might consider the ideal speedup of Parareal al-
gorithm assuming ideal parallelization and negligible communication time. In the distributed Parareal algorithm, the
ideal runtime (𝑡ideal) of Parareal algorithm can be given as:

𝑡ideal = 𝑇𝑐 +
𝑘

𝑁
(𝑇𝑓 + 𝑇𝑐)

where 𝑁 and 𝑘 represent the number of processors used in the fine operator and the number of Parareal iterations
required for convergence, respectively; 𝑇𝑐 and 𝑇𝑓 refer to the coarse and fine propagation times, respectively over the
whole simulation time period.

7.3 para_real.py

The main python code to runt RAPID is para_real.py. An example command line to run the simulation is following:
mpiexec -n 50 python para_real.py 0.0 0.2 –nCoarse 10 –nFine 100 –tol 0.01 –tolcheck
maxabs –debug 1 -o result.csv

Necessary arguments are

• 50: the number of processors for parallel computing of the fine operator.

• 0: start time.

• 0.2: end time.

Optional arguments are

• –nCoarse: the number of time intervals for the coarse operator.

• –nFine: the number of time intervals for the fine operator.

• –tol: tolerance for convergence. The default is 1.0.

• –tolcheck: method for convergence check. The default is L2.

• –debug: debug printout.

• -o: write results to result.csv.

In the result.csv file, results are formatted in the csv form. The first column corresponds to the simulation time and
other columns correspond to the solution values of state and algebraic variables. Each row corresponds to each time
step. ⎡⎢⎢⎢⎢⎣

𝐶𝑜𝑙1 𝐶𝑜𝑙2 · · · 𝐶𝑜𝑙𝑀
𝑡0 𝑆𝑜𝑙1(𝑡0) · · · 𝑆𝑜𝑙𝑀−1(𝑡0)
𝑡1 𝑆𝑜𝑙1(𝑡1) · · · 𝑆𝑜𝑙𝑀−1(𝑡1)
· · · · · · · · · · · ·
𝑡𝑁 𝑆𝑜𝑙1(𝑡𝑁) · · · 𝑆𝑜𝑙𝑀−1(𝑡𝑁)

⎤⎥⎥⎥⎥⎦

7.3. para_real.py 25

rapid, Release v1.0

26 Chapter 7. Parareal Algorithm

CHAPTER

EIGHT

SOLUTION METHOD

This section describes a variety of solution methods which is employed in the coarse operator and fine operator of the
Parareal algorithm. One approach is based on the standard numerical predictor-corrector method, and another approach
is based on the semi-analytical solution method.

8.1 Standard Numerical Iteration Method

8.1.1 Midpoint-Trapezoidal Predictor-Corrector

Based on the results in [G+16], the following Midpoint-Trapezoidal predictor-corrector (Trap) method is selected as
the standard numerical predictor-corrector method to be used as the coarse operator of Parareal algorithm. This Trap
method serves as the standard coarse operator and is compared with two SAS methods that will be discussed in the
subsequent sections.

• Coarse Operator:

𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 :

𝑥𝑗𝑛+1 = 𝑥𝑗𝑛 + ∆𝑡𝑓
(︁
𝑡𝑛 +

∆𝑡

2
, 𝑥𝑛 +

1

2
𝑓(𝑡𝑛, 𝑥𝑛)

)︁
𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑜𝑟 :

𝑥𝑗+1
𝑛+1 = 𝑥𝑗𝑛 +

∆𝑡

2

[︁
𝑓(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛+1, 𝑥

𝑗
𝑛+1)

]︁
For the Trap method, only one iteration (𝑗 = 1) is used to obtain an approximate solution in the simulations.

8.1.2 the Runge-Kutta 4th Order Method

For the fine operator, the Runge-Kutta 4th order (RK-4), widely used in power system dynamic simulations, is employed.
This RK-4 method has remained unchanged as the fine operator of Parareal algorithm for the dummy coil model.

• Fine Operator:

𝑘1 = 𝑓(𝑡𝑛, 𝑥𝑛), 𝑘2 = 𝑓
(︁
𝑡𝑛 +

𝛿𝑡

2
, 𝑥𝑛 +

𝛿𝑡

2
𝑘1

)︁
𝑘3 = 𝑓

(︁
𝑡𝑛 +

𝛿𝑡

2
, 𝑥𝑛 +

𝛿𝑡

2
𝑘2

)︁
𝑘4 = 𝑓

(︁
𝑡𝑛 + 𝛿𝑡, 𝑥𝑛 + 𝛿𝑡𝑘3

)︁
𝑥𝑛+1 = 𝑥𝑛 +

1

6
[𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4]

27

rapid, Release v1.0

Network equations are solved within each time step for the both coarse and fine operators in order to mitigate interface
errors due to alternating solution.

8.2 Semi-Analytical Solution Method

Besides the standard numerical iteration methods, semi-analytical solution (SAS) has been proposed in recent years for
fast power system simulations. Generally, the SAS refers to power series or closed-form solutions for approximating
solutions of nonlinear differential equations. SAS in a form of an explicit expression can be derived offline once for
given system conditions, and then evaluated in the online stage without iterations. SAS methods have been widely
applied to solve nonlinear ordinary differential equations (ODEs) and DAE problems in the applied sciences and en-
gineering [23]. The SAS-based approach is a powerful analytical technique for strongly nonlinear problems. It can
provide a RAPID convergence to a solution, and thus has shown the potential for fast power system simulations.

This toolbox utilizes two promising time-power series-based SAS methods; Adomian decomposition method (ADM)
[G+17], [DRBW12] and Homotopy Analysis method (HAM) [Lia03], [DG19]. In the time-power series-based SAS
methods, the true solution 𝑥(𝑡) to the initial value problem of [eq:IVP] can be analytically represented as an infinite
series []:

𝑥(𝑡) =

∞∑︁
𝑖=0

𝑎𝑖(𝑡− 𝑡0)𝑖 = 𝑎0 + 𝑎1(𝑡− 𝑡0) + · · ·

where 𝑡0 represents the initial time; 𝑎0 indicates the initial state 𝑥0; and 𝑎𝑖 for 𝑖 ≥ 1 depends on 𝑎0 and system
parameters. The SAS method approximates the solution 𝑥(𝑡) by truncating higher order terms of the true solution
[eq:SAS1] as follows:

𝑥(𝑡) ≈ 𝑥𝑚𝑆𝐴𝑆(𝑡) =

𝑚∑︁
𝑖=0

𝑎𝑖(𝑡− 𝑡0)𝑖

where 𝑚 is the order of the SAS 𝑥𝑚𝑆𝐴𝑆(𝑡).

Notice that the basic idea of SAS methods is to shift the computational burden of deriving an approximate but analytical
solution, which preserves accuracy for a certain time interval, to the offline stage that mathematically derives unknown
coefficients 𝑎1, 𝑎2, ..., 𝑎𝑚. Then, in the online stage, values are simply plugged into symbolic SAS terms, which are
already derived offline, over consecutive time intervals until the end of the whole simulation period. This allows for
a very fast online simulation task since no numerical iteration is needed. There can be multiple ways to derive such
unknown coefficients 𝑎1, 𝑎2, ..., 𝑎𝑚. The following subsections discuss two SAS methods to obtain these terms for DEs
of power systems.

8.2.1 Adomian Decomposition Method

This section briefly reviews the basic concept of ADM. Consider a nonlinear ordinary differential equation (ODE) in
the following form:

𝐿𝑥 = −𝑅𝑥−𝑁(𝑥) + 𝑔

where 𝐿 = 𝑑
𝑑𝑡 and 𝐿−1 =

∫︀ 𝑡
0
𝑑𝑡; 𝑥 is the state variable of the system; 𝑅 and 𝑁 are the linear and nonlinear operator,

respectively; and 𝑔 is the constant term. One should identify the highest differential operator, constant terms, linear
and nonlinear function in the ODE. With this, one might get the following to solve for 𝑥:

𝑥 = 𝑥0 + 𝐿−1𝑔 − 𝐿−1𝑅𝑥− 𝐿−1𝑁(𝑥)

where the inverse operator can be regarded as 𝐿−1 =
∫︀ 𝑡
0
𝑑𝑡 and 𝑥0 is the given initial condition. Now, assume that the

solution 𝑥(𝑡) can be presented as an infinite series of the form:

𝑥(𝑡) =

∞∑︁
𝑛=0

𝑥𝑛(𝑡)

28 Chapter 8. Solution Method

rapid, Release v1.0

and then decompose the nonlinear operator 𝑁(𝑥) into infinite series:

𝑁(𝑥) =

∞∑︁
𝑛=0

𝐴𝑛

where 𝐴𝑛 are called the Adomain polynomials. Suppose the nonlinear function 𝑁(𝑥) = 𝑓(𝑥). Adomian polynomials
are obtained using the following formula:

𝐴𝑛(𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑛) =
1

𝑛!

[︁ 𝑑𝑛
𝑑𝜆𝑛

𝑖=0∑︁
∞
𝜆𝑖𝑥𝑖

]︁⃒⃒⃒
𝜆=0

where 𝜆 is a grouping parameter. Then, we substitute the Adomian series, [eq:ADM1] and [eq:ADM2], in [eq:ADM0],
which gives the solution for 𝑥(𝑡) as:

𝑥(𝑡) =

∞∑︁
𝑛=0

𝑥𝑛 = 𝑥0 + 𝐿−1𝑔 − 𝐿−1𝑅

∞∑︁
𝑛=0

𝑥𝑛 − 𝐿−1
∞∑︁
𝑛=0

𝐴𝑛

From this, we can obtain the terms of the ADM in power series forms as follows:

[eq:ADM3]

𝑥0(𝑡) = 𝑥(0)

𝑥1(𝑡) = 𝐿−1𝑔 − 𝐿−1𝑅𝑥0 − 𝐿−1𝐴0

𝑥2(𝑡) = −𝐿−1𝑅𝑥1 − 𝐿−1𝐴1

:

𝑥𝑛+1(𝑡) = −𝐿−1𝑅𝑥𝑛 − 𝐿−1𝐴𝑛

The AMD method provides a fast convergence series, and thus the approximate solution by the truncated series∑︀𝑚
𝑛=0 𝑥𝑛 = 𝑥𝑚𝑆𝐴𝑆(𝑡) can serve as a good practical solution. Here, the coefficients 𝑎0, 𝑎1, ..., 𝑎𝑚 in [eq:SAS2] corre-

spond to the terms 𝑥0, 𝑥1, ..., 𝑥𝑚 in [eq:ADM3].

In particular, we employ multi-stage approach, applying ADM over multiple intervals of time, to improve the
convergence region of power series ODE solution using ADM; this is referred to as the multistage ADM
(MADM). The MADM uses the ADM to approximate the dynamical response in a sequence of time intervals
[0, 𝑡1], [𝑡1, 𝑡2], ..., [𝑡𝑁−1, 𝑡𝑁]. Note that the solution at tn becomes an initial condition in the interval [𝑡𝑛, 𝑡𝑛+1]. This
toolbox uses the MADM as one of the coarse operators to obtain an approximation solution 𝑥(𝑡) with the equal time
step ∆𝑡 for all intervals, which is the step size of integration for the coarse operator.

In addition, the derivation of first few polynomials is given as follows:

8.2. Semi-Analytical Solution Method 29

rapid, Release v1.0

[eq:ADM4]

𝐴0 = 𝑓(𝑥0)

𝐴1 =
1

1!

𝑑

𝑑𝜆

[︁
𝑓(𝑥0 + 𝑥1𝜆

1 + 𝑥2𝜆
2 + · · ·)

]︁⃒⃒⃒
𝜆=0

= 1𝑓
′
(𝑥0 + 𝑢1𝜆1 + · · ·)(𝑥1 + 2𝑥2𝜆+ · · ·) by chain rule

= 𝑓
′
(𝑥0)𝑥1

𝐴2 =
1

2!

𝑑2

𝑑𝜆2

[︁
𝑓(𝑥0 + 𝑥1𝜆

1 + 𝑥2𝜆
2 + · · ·)

]︁⃒⃒⃒
𝜆=0

=
1

2!

𝑑

𝑑𝜆

[︁
𝑓

′
(𝑥0 + 𝑢1𝜆1 + · · ·)(𝑥1 + 2𝑥2𝜆+ · · ·)

]︁⃒⃒⃒
𝜆=0

=
1

2!

[︁
𝑓

′′
(𝑥0 + 𝑢1𝜆1 + · · ·)(𝑥1 + 2𝑥2𝜆+ · · ·)(𝑥1 + 2𝑥2𝜆+ · · ·)

+ 𝑓
′
(𝑥0 + 𝑢1𝜆1 + · · ·)(2𝑥2 + · · ·)

]︁⃒⃒⃒
𝜆=0

by product rule

=
1

2!

[︁
𝑓

′′
(𝑥0)𝑥21 + 2𝑓

′
(𝑥0)𝑥2

]︁
𝐴3 =

1

3!

[︁
𝑓

′′′
(𝑥0)𝑥31 + 3!𝑓

′′
(𝑥0)𝑥1𝑥2 + 3!𝑓

′
(𝑥0)𝑥3

]︁
by similar step

The derivation of MADM terms for each device:

The following descriptions detail the derivation of MADM terms for each device. The following steps summarize the
development of the MDAM:

1. Recognize linear, nonlinear, and constant terms of differential equations according to [eq:ADM1].

2. Find nonlinear terms, and approximate them using Adomian polynomial [eq:ADM4]. If there is no nonlinear
term, this step is not needed.

3. Obtain the MADM terms (𝑥0, 𝑥1, ..., 𝑥𝑚) based on [eq:ADM3] and integrate each term analytically.

4. Obtain the closed form approximate solution for the desired number of terms 𝑚.

𝑥(∆𝑡) = 𝑥0 + 𝑥1∆𝑡+ ...+ 𝑥𝑚∆𝑡𝑚

We apply these steps to each device. As an example, we describe the derivation of a few terms as follows:

30 Chapter 8. Solution Method

rapid, Release v1.0

• Turbine:

˙𝑇𝑚 =
1

𝑇𝑐ℎ
(−𝑇𝑚 + 𝑃𝑠𝑣)

𝑇𝑚(𝑡) = 𝑇𝑚(0) +
1

𝑇𝑐ℎ

∫︁ Δ𝑡

0

(−𝑇𝑚 + 𝑃𝑠𝑣)𝑑𝑡

𝑇𝑚,0 = 𝑇𝑚(0)𝑇𝑚(0)𝑇𝑚(0)

𝑇𝑚,1 =
1

𝑇𝑐ℎ

∫︁ Δ𝑡

0

(−𝑇𝑚(0) + 𝑃𝑠𝑣(0))𝑑𝑡 =
1

𝑇𝑐ℎ
(−𝑇𝑚(0) + 𝑃𝑠𝑣(0))

1

𝑇𝑐ℎ
(−𝑇𝑚(0) + 𝑃𝑠𝑣(0))

1

𝑇𝑐ℎ
(−𝑇𝑚(0) + 𝑃𝑠𝑣(0))∆𝑡

𝑇𝑚,2 =
1

𝑇𝑐ℎ

∫︁ Δ𝑡

0

(−𝑇𝑚,1 + 𝑃𝑠𝑣,1)𝑑𝑡

=
1

𝑇𝑐ℎ

∫︁ Δ𝑡

0

(︁
− 1

𝑇𝑐ℎ
(−𝑇𝑚(0) + 𝑃𝑠𝑣(0))∆𝑡

+
1

𝑇𝑠𝑣
(−𝑃𝑠𝑣(0) + 𝑃𝑐 −

1

𝑅𝑑
𝜔(0))∆𝑡

)︁
𝑑𝑡

=
1

𝑇𝑐ℎ

[︁
− 1

2
𝑇𝑚,1𝑡

2 +
1

2
𝑃𝑠𝑣,1𝑡

2
]︁Δ𝑡
0

=
1

𝑇𝑐ℎ

(︁
− 1

2
𝑇𝑚,1 +

1

2
𝑃𝑠𝑣,1

)︁1

𝑇𝑐ℎ

(︁
− 1

2
𝑇𝑚,1 +

1

2
𝑃𝑠𝑣,1

)︁1

𝑇𝑐ℎ

(︁
− 1

2
𝑇𝑚,1 +

1

2
𝑃𝑠𝑣,1

)︁
∆𝑡2

𝑇𝑚,3 =
1

𝑇𝑐ℎ

∫︁ Δ𝑡

0

(−𝑇𝑚,2 + 𝑃𝑠𝑣,2)𝑑𝑡

𝑇𝑚,4 = · · ·

• Governor:

˙𝑃𝑠𝑣 =
1

𝑇𝑠𝑣
(−𝑃𝑠𝑣 + 𝑃𝑐 −

1

𝑅𝑑
𝜔)

𝑃𝑠𝑣(𝑡) = 𝑃𝑠𝑣(0) +
1

𝑇𝑠𝑣

∫︁ Δ𝑡

0

(−𝑃𝑠𝑣 + 𝑃𝑐 −
1

𝑅𝑑
𝜔)𝑑𝑡

𝑃𝑠𝑣,0 = 𝑃𝑠𝑣(0)𝑃𝑠𝑣(0)𝑃𝑠𝑣(0)

𝑃𝑠𝑣,1 =
1

𝑇𝑠𝑣

∫︁ Δ𝑡

0

(−𝑃𝑠𝑣(0) + 𝑃𝑐 −
1

𝑅𝑑
𝜔(0))𝑑𝑡

=
1

𝑇𝑠𝑣
(−𝑃𝑠𝑣(0) + 𝑃𝑐 −

1

𝑅𝑑
𝜔(0))

1

𝑇𝑠𝑣
(−𝑃𝑠𝑣(0) + 𝑃𝑐 −

1

𝑅𝑑
𝜔(0))

1

𝑇𝑠𝑣
(−𝑃𝑠𝑣(0) + 𝑃𝑐 −

1

𝑅𝑑
𝜔(0))∆𝑡

𝑃𝑠𝑣,2 =
1

𝑇𝑠𝑣

∫︁ Δ𝑡

0

(−𝑃𝑠𝑣,1 −
1

𝑅𝑑
𝜔1)𝑑𝑡

=
1

𝑇𝑠𝑣

∫︁ Δ𝑡

0

(−𝑃𝑠𝑣,1∆𝑡− 1

𝑅𝑑
𝜔1∆𝑡)𝑑𝑡

=
1

𝑇𝑠𝑣

(︁
− 1

2
𝑃𝑠𝑣,1 −

1

2

1

𝑅𝑑
𝜔1

)︁1

𝑇𝑠𝑣

(︁
− 1

2
𝑃𝑠𝑣,1 −

1

2

1

𝑅𝑑
𝜔1

)︁1

𝑇𝑠𝑣

(︁
− 1

2
𝑃𝑠𝑣,1 −

1

2

1

𝑅𝑑
𝜔1

)︁
∆𝑡2

• Excitation:

1. The variable 𝐸𝑓𝑑:

˙𝐸𝑓𝑑 =
1

𝑇𝐸
(−[𝐾𝐸 +𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑)]𝐸𝑓𝑑 + 𝑉𝑅)

𝐸𝑓𝑑(𝑡) = 𝐸𝑓𝑑(0) +
1

𝑇𝐸

∫︁ Δ𝑡

0

(−𝐾𝐸𝐸𝑓𝑑 −𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑)𝐸𝑓𝑑 + 𝑉𝑅)𝑑𝑡

𝐸𝑓𝑑(𝑡) = 𝐸𝑓𝑑(0) +
1

𝑇𝐸

∫︁ Δ𝑡

0

(−𝐾𝐸𝐸𝑓𝑑 −
∞∑︁
𝑛=0

𝐴1,𝑛 + 𝑉𝑅)𝑑𝑡

8.2. Semi-Analytical Solution Method 31

rapid, Release v1.0

Here, we define 𝐴1 = 𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑)𝐸𝑓𝑑 =
∑︀∞
𝑛=0𝐴1,𝑛. Therefore,

𝐸𝑓𝑑(𝑡) = 𝐸𝑓𝑑(0) +
1

𝑇𝐸

∫︁ Δ𝑡

0

(−𝐾𝐸𝐸𝑓𝑑 −
∞∑︁
𝑛=0

𝐴1,𝑛 + 𝑉𝑅)𝑑𝑡

𝐸𝑓𝑑,0 = 𝐸𝑓𝑑(0)𝐸𝑓𝑑(0)𝐸𝑓𝑑(0)

𝐸𝑓𝑑,1 =
1

𝑇𝐸

∫︁ Δ𝑡

0

(−𝐾𝐸𝐸𝑓𝑑(0) −𝐴1,0 + 𝑉𝑅(0))𝑑𝑡

𝐸𝑓𝑑,1 =
1

𝑇𝐸
(−𝐾𝐸𝐸𝑓𝑑(0) −𝐴1,0 + 𝑉𝑅(0))

1

𝑇𝐸
(−𝐾𝐸𝐸𝑓𝑑(0) −𝐴1,0 + 𝑉𝑅(0))

1

𝑇𝐸
(−𝐾𝐸𝐸𝑓𝑑(0) −𝐴1,0 + 𝑉𝑅(0))∆𝑡

𝐸𝑓𝑑,2 =
1

𝑇𝐸

∫︁ Δ𝑡

0

(−𝐾𝐸𝐸𝑓𝑑,1 −𝐴1,1 + 𝑉𝑅,1)𝑑𝑡

=
1

𝑇𝐸

(︁
− 1

2
𝐾𝐸𝐸𝑓𝑑,1 −

1

2
(𝐴𝐴+𝐵𝐵)𝐸𝑓𝑑,1 +

1

2
𝑉𝑅,1

)︁1

𝑇𝐸

(︁
− 1

2
𝐾𝐸𝐸𝑓𝑑,1 −

1

2
(𝐴𝐴+𝐵𝐵)𝐸𝑓𝑑,1 +

1

2
𝑉𝑅,1

)︁1

𝑇𝐸

(︁
− 1

2
𝐾𝐸𝐸𝑓𝑑,1 −

1

2
(𝐴𝐴+𝐵𝐵)𝐸𝑓𝑑,1 +

1

2
𝑉𝑅,1

)︁
∆𝑡2

where 𝐴1,0 = 𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑(0))𝐸𝑓𝑑(0),

and 𝐴1,1 =
(︁
𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑(0)) +𝐵𝐸𝐴𝐸(𝑒𝐵𝐸𝐸𝑓𝑑(0))𝐸𝑓𝑑(0)

)︁
𝐸𝑓𝑑,1 = (𝐴𝐴+𝐵𝐵)𝐸𝑓𝑑,1, where 𝐴𝐴 and

𝐵𝐵 are newly introduced as parameters.

2. The variable 𝑉2:

𝑉2 =
1

𝑇𝐹
(−𝑉2 +

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑)

𝑉2(𝑡) = 𝑉2(0) +
1

𝑇𝐹

∫︁ Δ𝑡

0

(−𝑉2 +
𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑)𝑑𝑡

𝑉2,0 = 𝑉2(0)𝑉2(0)𝑉2(0)

𝑉2,1 =
1

𝑇𝐹
(−𝑉2(0) +

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0))∆𝑡

1

𝑇𝐹
(−𝑉2(0) +

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0))∆𝑡

1

𝑇𝐹
(−𝑉2(0) +

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0))∆𝑡

𝑉2,2 =
1

𝑇𝐹

∫︁ Δ𝑡

0

(−𝑉2,1 +
𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1)𝑑𝑡

=
1

𝑇𝐹

(︁
− 1

2
𝑉2,1 +

1

2

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1

)︁1

𝑇𝐹

(︁
− 1

2
𝑉2,1 +

1

2

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1

)︁1

𝑇𝐹

(︁
− 1

2
𝑉2,1 +

1

2

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1

)︁
∆𝑡2

3. The variable 𝑉1:

𝑉1 =
1

𝑇𝑅
(−𝑉1 + 𝑉𝑇)

𝑉1(𝑡) = 𝑉1(0) +
1

𝑇𝑅

∫︁ Δ𝑡

0

(−𝑉1 + 𝑉𝑇)𝑑𝑡

𝑉1,0 = 𝑉1(0)𝑉1(0)𝑉1(0)

𝑉1,1 =
1

𝑇𝑅
(−𝑉1(0) + 𝑉𝑇)

1

𝑇𝑅
(−𝑉1(0) + 𝑉𝑇)

1

𝑇𝑅
(−𝑉1(0) + 𝑉𝑇)∆𝑡

𝑉1,2 =
1

𝑇𝑅

∫︁ Δ𝑡

0

(−𝑉1,1)𝑑𝑡

=
1

𝑇𝑅
(−1

2
𝑉1,1)

1

𝑇𝑅
(−1

2
𝑉1,1)

1

𝑇𝑅
(−1

2
𝑉1,1)∆𝑡2

32 Chapter 8. Solution Method

rapid, Release v1.0

4. The variable 𝑉𝑅:

𝑉𝑅 =
1

𝑇𝐴

(︁
− 𝑉𝑅 +𝐾𝐴

(︀
𝑉 ref − 𝑉1 − (

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑 − 𝑉2)

)︀)︁
𝑉𝑅(𝑡) = 𝑉𝑅(0)

+
1

𝑇𝐴

∫︁ Δ𝑡

0

(︁
− 𝑉𝑅 +𝐾𝐴

(︀
𝑉 ref − 𝑉1 − (

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑 − 𝑉2)

)︀)︁
𝑑𝑡

𝑉𝑅,0 = 𝑉𝑅(0)𝑉𝑅(0)𝑉𝑅(0)

𝑉𝑅,1 =
1

𝑇𝐴

∫︁ Δ𝑡

0

(︁
− 𝑉𝑅(0) +𝐾𝐴𝑉

ref −𝐾𝐴𝑉1(0)

−𝐾𝐴
𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0) +𝐾𝐴𝑉2(0)

)︁
𝑑𝑡

𝑉𝑅,1 =
1

𝑇𝐴

(︁
− 𝑉𝑅(0) +𝐾𝐴𝑉

ref −𝐾𝐴𝑉1(0)
1

𝑇𝐴

(︁
− 𝑉𝑅(0) +𝐾𝐴𝑉

ref −𝐾𝐴𝑉1(0)
1

𝑇𝐴

(︁
− 𝑉𝑅(0) +𝐾𝐴𝑉

ref −𝐾𝐴𝑉1(0)

−𝐾𝐴
𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0) +𝐾𝐴𝑉2(0)

)︁
−𝐾𝐴

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0) +𝐾𝐴𝑉2(0)

)︁
−𝐾𝐴

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑(0) +𝐾𝐴𝑉2(0)

)︁
∆𝑡

𝑉𝑅,2 =
1

𝑇𝐴

∫︁ Δ𝑡

0

(︁
− 𝑉𝑅,1 −𝐾𝐴𝑉1,1 −𝐾𝐴

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1 +𝐾𝐴𝑉2,1

)︁
𝑑𝑡

=
1

𝑇𝐴

(︁
− 1

2
𝑉𝑅,1 −

1

2
𝐾𝐴𝑉1,1 −

1

2
𝐾𝐴

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1 +

1

2
𝐾𝐴𝑉2,1

)︁(︁
− 1

2
𝑉𝑅,1 −

1

2
𝐾𝐴𝑉1,1 −

1

2
𝐾𝐴

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1 +

1

2
𝐾𝐴𝑉2,1

)︁(︁
− 1

2
𝑉𝑅,1 −

1

2
𝐾𝐴𝑉1,1 −

1

2
𝐾𝐴

𝐾𝐹

𝑇𝐹
𝐸𝑓𝑑,1 +

1

2
𝐾𝐴𝑉2,1

)︁
∆𝑡2

• Synchronous Machine:

1. The variable 𝛿:

�̇� = 𝜔𝐵𝜔

𝛿(𝑡) = 𝛿(0) +

∫︁ Δ𝑡

0

𝜔𝐵𝜔𝑑𝑡

𝛿0 = 𝛿(0)𝛿(0)𝛿(0)

𝛿1 =

∫︁ Δ𝑡

0

𝜔𝐵𝜔(0)𝑑𝑡

= 𝜔𝐵𝜔(0)𝜔𝐵𝜔(0)𝜔𝐵𝜔(0)∆𝑡

𝛿2 =

∫︁ Δ𝑡

0

𝜔𝐵𝜔1,1𝑑𝑡

=
1

2
𝜔𝐵𝜔1,1

1

2
𝜔𝐵𝜔1,1

1

2
𝜔𝐵𝜔1,1∆𝑡2

8.2. Semi-Analytical Solution Method 33

rapid, Release v1.0

2. The variable 𝜔:

�̇� =
1

2𝐻
(𝑇𝑚 − 𝑇𝑒 −𝐷𝜔)

𝜔(𝑡) = 𝜔(0) +
1

2𝐻

∫︁ Δ𝑡

0

(𝑇𝑚 − 𝑇𝑒 −𝐷𝜔)𝑑𝑡

𝜔0 = 𝜔(0)𝜔(0)𝜔(0)

𝜔1 =
1

2𝐻

∫︁ Δ𝑡

0

(𝑇𝑚(0) − 𝑇𝑒 −𝐷𝜔(0))𝑑𝑡

=
1

2𝐻
(𝑇𝑚(0) − 𝑇𝑒 −𝐷𝜔(0))

1

2𝐻
(𝑇𝑚(0) − 𝑇𝑒 −𝐷𝜔(0))

1

2𝐻
(𝑇𝑚(0) − 𝑇𝑒 −𝐷𝜔(0))∆𝑡

𝜔2 =
1

2𝐻

∫︁ Δ𝑡

0

(𝑇𝑚,1 −𝐷𝜔1)𝑑𝑡

=
1

2𝐻

(︁1

2
𝑇𝑚,1 −

1

2
𝐷𝜔1

)︁1

2𝐻

(︁1

2
𝑇𝑚,1 −

1

2
𝐷𝜔1

)︁1

2𝐻

(︁1

2
𝑇𝑚,1 −

1

2
𝐷𝜔1

)︁
∆𝑡2

3. The variable 𝜓𝑓 :

𝜓𝑓 = −𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓 +
𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑

𝜓𝑓 (𝑡) = 𝜓𝑓 (0) +

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑓

𝑋𝑓𝑙
𝜓𝑓 +

𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑

)︁
𝑑𝑡

𝜓𝑓,0 = 𝜓𝑓 (0)𝜓𝑓 (0)𝜓𝑓 (0)

𝜓𝑓,1 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑓

𝑋𝑓𝑙
𝜓𝑓 (0) +

𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑(0)
)︁
𝑑𝑡

=
(︁
− 𝜔𝐵𝑅𝑓

𝑋𝑓𝑙
𝜓𝑓 (0) +

𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑(0)
)︁(︁

− 𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓 (0) +
𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑(0)
)︁(︁

− 𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓 (0) +
𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑎𝑑 +
𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑(0)
)︁

∆𝑡

𝜓𝑓,2 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑓

𝑋𝑓𝑙
𝜓𝑓,1 +

𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑,1

)︁
𝑑𝑡

=
(︁
− 1

2

𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓,1 +
1

2

𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑,1

)︁(︁
− 1

2

𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓,1 +
1

2

𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑,1

)︁(︁
− 1

2

𝜔𝐵𝑅𝑓
𝑋𝑓𝑙

𝜓𝑓,1 +
1

2

𝜔𝐵𝑅𝑓
𝑋𝑎𝑑

𝐸𝑓𝑑,1

)︁
∆𝑡2

4. The variable 𝜓ℎ:

𝜓ℎ = −𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓ℎ +
𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

𝜓ℎ(𝑡) = 𝜓ℎ(0) +

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅ℎ

𝑋ℎ𝑙
𝜓ℎ +

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

)︁
𝑑𝑡

𝜓ℎ,0 = 𝜓ℎ(0)𝜓ℎ(0)𝜓ℎ(0)

𝜓ℎ,1 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅ℎ

𝑋ℎ𝑙
𝜓ℎ(0) +

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

)︁
𝑑𝑡

=
(︁
− 𝜔𝐵𝑅ℎ

𝑋ℎ𝑙
𝜓ℎ(0) +

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

)︁(︁
− 𝜔𝐵𝑅ℎ

𝑋ℎ𝑙
𝜓ℎ(0) +

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

)︁(︁
− 𝜔𝐵𝑅ℎ

𝑋ℎ𝑙
𝜓ℎ(0) +

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓𝑎𝑑

)︁
∆𝑡

𝜓ℎ,2 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅ℎ

𝑋ℎ𝑙
𝜓ℎ,1

)︁
𝑑𝑡

=
(︁
− 1

2

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓ℎ,1

)︁(︁
− 1

2

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓ℎ,1

)︁(︁
− 1

2

𝜔𝐵𝑅ℎ
𝑋ℎ𝑙

𝜓ℎ,1

)︁
∆𝑡2

34 Chapter 8. Solution Method

rapid, Release v1.0

5. The variable 𝜓𝑔:

𝜓𝑔 = −𝜔𝐵𝑅𝑔
𝑋𝑓𝑙

𝜓𝑔 +
𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

𝜓𝑔(𝑡) = 𝜓𝑔(0) +

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑔

𝑋𝑓𝑙
𝜓𝑔 +

𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

)︁
𝑑𝑡

𝜓𝑔,0 = 𝜓𝑔(0)𝜓𝑔(0)𝜓𝑔(0)

𝜓𝑔,1 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑔

𝑋𝑓𝑙
𝜓𝑔(0) +

𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

)︁
𝑑𝑡

=
(︁
− 𝜔𝐵𝑅𝑔

𝑋𝑓𝑙
𝜓𝑔(0) +

𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

)︁(︁
− 𝜔𝐵𝑅𝑔

𝑋𝑓𝑙
𝜓𝑔(0) +

𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

)︁(︁
− 𝜔𝐵𝑅𝑔

𝑋𝑓𝑙
𝜓𝑔(0) +

𝜔𝐵𝑅𝑔
𝑋𝑔𝑙

𝜓𝑎𝑞

)︁
∆𝑡

𝜓𝑔,2 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑔

𝑋𝑓𝑙
𝜓𝑔,1

)︁
𝑑𝑡

=
(︁
− 1

2

𝜔𝐵𝑅𝑔
𝑋𝑓𝑙

𝜓𝑔,1

)︁(︁
− 1

2

𝜔𝐵𝑅𝑔
𝑋𝑓𝑙

𝜓𝑔,1

)︁(︁
− 1

2

𝜔𝐵𝑅𝑔
𝑋𝑓𝑙

𝜓𝑔,1

)︁
∆𝑡2

6. The variable 𝜓𝑘:

𝜓𝑘 = −𝜔𝐵𝑅𝑘
𝑋𝑓𝑙

𝜓𝑘 +
𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

𝜓𝑘(𝑡) = 𝜓𝑘(0) +

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑘

𝑋𝑓𝑙
𝜓𝑘 +

𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

)︁
𝑑𝑡

𝜓𝑘,0 = 𝜓𝑘(0)𝜓𝑘(0)𝜓𝑘(0)

𝜓𝑘,1 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑘

𝑋𝑓𝑙
𝜓𝑘(0) +

𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

)︁
𝑑𝑡

=
(︁
− 𝜔𝐵𝑅𝑘

𝑋𝑓𝑙
𝜓𝑘(0) +

𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

)︁(︁
− 𝜔𝐵𝑅𝑘

𝑋𝑓𝑙
𝜓𝑘(0) +

𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

)︁(︁
− 𝜔𝐵𝑅𝑘

𝑋𝑓𝑙
𝜓𝑘(0) +

𝜔𝐵𝑅𝑘
𝑋𝑘𝑙

𝜓𝑎𝑞

)︁
∆𝑡

𝜓𝑘,2 =

∫︁ Δ𝑡

0

(︁
− 𝜔𝐵𝑅𝑘

𝑋𝑓𝑙
𝜓𝑘,1

)︁
𝑑𝑡

=
(︁
− 1

2

𝜔𝐵𝑅𝑘
𝑋𝑓𝑙

𝜓𝑘,1

)︁(︁
− 1

2

𝜔𝐵𝑅𝑘
𝑋𝑓𝑙

𝜓𝑘,1

)︁(︁
− 1

2

𝜔𝐵𝑅𝑘
𝑋𝑓𝑙

𝜓𝑘,1

)︁
∆𝑡2

7. The variable 𝐸dum:

˙𝐸dum =
1

𝑇 dum

(︁
− 𝐸dum − (𝑋

′′

𝑞𝑠 −𝑋
′′

𝑑𝑠)𝑖𝑞

)︁
𝐸dum(𝑡) = 𝐸dum(0) +

∫︁ Δ𝑡

0

1

𝑇 dum

(︁
− 𝐸dum − (𝑋

′′

𝑞𝑠 −𝑋
′′

𝑑𝑠)𝑖𝑞

)︁
𝑑𝑡

𝐸dum
0 = 𝐸dum(0)𝐸dum(0)𝐸dum(0)

𝐸dum
1 =

∫︁ Δ𝑡

0

1

𝑇 dum

(︁
− 𝐸dum(0) − (𝑋

′′

𝑞𝑠(0) −𝑋
′′

𝑑𝑠(0))𝑖𝑞

)︁
𝑑𝑡

=
1

𝑇 dum

(︁
− 𝐸dum(0) − (𝑋

′′

𝑞𝑠(0) −𝑋
′′

𝑑𝑠(0))𝑖𝑞

)︁1

𝑇 dum

(︁
− 𝐸dum(0) − (𝑋

′′

𝑞𝑠(0) −𝑋
′′

𝑑𝑠(0))𝑖𝑞

)︁1

𝑇 dum

(︁
− 𝐸dum(0) − (𝑋

′′

𝑞𝑠(0) −𝑋
′′

𝑑𝑠(0))𝑖𝑞

)︁
∆𝑡

𝐸dum
2 =

∫︁ Δ𝑡

0

1

𝑇 dum

(︁
− 𝐸dum

1 − (𝑋
′′

𝑞𝑠,1 −𝑋
′′

𝑑𝑠,1)𝑖𝑞

)︁
𝑑𝑡

=
1

𝑇 dum

(︁
− 1

2
𝐸dum

1 − 1

2
𝑋

′′

𝑞𝑠,1𝑖𝑞 +
1

2
𝑋

′′

𝑑𝑠,1𝑖𝑞

)︁1

𝑇 dum

(︁
− 1

2
𝐸dum

1 − 1

2
𝑋

′′

𝑞𝑠,1𝑖𝑞 +
1

2
𝑋

′′

𝑑𝑠,1𝑖𝑞

)︁1

𝑇 dum

(︁
− 1

2
𝐸dum

1 − 1

2
𝑋

′′

𝑞𝑠,1𝑖𝑞 +
1

2
𝑋

′′

𝑑𝑠,1𝑖𝑞

)︁
∆𝑡2

8.2. Semi-Analytical Solution Method 35

rapid, Release v1.0

8. The variable 𝑋 ′′

𝑎𝑑:

˙𝑋
′′
𝑎𝑑 =

1

𝑇𝑑
(−𝑋

′′

𝑎𝑑 + 𝐹𝑑)

𝑋
′′

𝑎𝑑(𝑡) = 𝑋
′′

𝑎𝑑(0) +

∫︁ Δ𝑡

0

1

𝑇𝑑
(−𝑋

′′

𝑎𝑑 + 𝐹𝑑)𝑑𝑡

𝑋
′′

𝑎𝑑,0 = 𝑋
′′

𝑎𝑑(0)𝑋
′′

𝑎𝑑(0)𝑋
′′

𝑎𝑑(0)

𝑋
′′

𝑎𝑑,1 =

∫︁ Δ𝑡

0

1

𝑇𝑑
(−𝑋

′′

𝑎𝑑 + 𝐹𝑑)𝑑𝑡

=
1

𝑇𝑑
(−𝑋

′′

𝑎𝑑(0) + 𝐹𝑑)
1

𝑇𝑑
(−𝑋

′′

𝑎𝑑(0) + 𝐹𝑑)
1

𝑇𝑑
(−𝑋

′′

𝑎𝑑(0) + 𝐹𝑑)∆𝑡

𝑋
′′

𝑎𝑑,2 =

∫︁ Δ𝑡

0

1

𝑇𝑑
(−𝑋

′′

𝑎𝑑,1)𝑑𝑡

=
1

𝑇𝑑
(−1

2
𝑋

′′

𝑎𝑑,1)
1

𝑇𝑑
(−1

2
𝑋

′′

𝑎𝑑,1)
1

𝑇𝑑
(−1

2
𝑋

′′

𝑎𝑑,1)∆𝑡2

9. The variable 𝑋 ′′

𝑎𝑞:

˙𝑋 ′′
𝑎𝑞 =

1

𝑇𝑞
(−𝑋

′′

𝑎𝑞 + 𝐹𝑞)

𝑋
′′

𝑎𝑞(𝑡) = 𝑋
′′

𝑎𝑞(0) +

∫︁ Δ𝑡

0

1

𝑇𝑞
(−𝑋

′′

𝑎𝑞 + 𝐹𝑞)𝑑𝑡

𝑋
′′

𝑎𝑞,0 = 𝑋
′′

𝑎𝑞(0)𝑋
′′

𝑎𝑞(0)𝑋
′′

𝑎𝑞(0)

𝑋
′′

𝑎𝑞,1 =

∫︁ Δ𝑡

0

1

𝑇𝑞
(−𝑋

′′

𝑎𝑞 + 𝐹𝑞)𝑑𝑡

=
1

𝑇𝑞
(−𝑋

′′

𝑎𝑞(0) + 𝐹𝑞)
1

𝑇𝑞
(−𝑋

′′

𝑎𝑞(0) + 𝐹𝑞)
1

𝑇𝑞
(−𝑋

′′

𝑎𝑞(0) + 𝐹𝑞)∆𝑡

𝑋
′′

𝑎𝑞,2 =

∫︁ Δ𝑡

0

1

𝑇𝑞
(−𝑋

′′

𝑎𝑞,1)𝑑𝑡

=
1

𝑇𝑞
(−1

2
𝑋

′′

𝑎𝑞,1)
1

𝑇𝑞
(−1

2
𝑋

′′

𝑎𝑞,1)
1

𝑇𝑞
(−1

2
𝑋

′′

𝑎𝑞,1)∆𝑡2

• Load Dynamic:

36 Chapter 8. Solution Method

rapid, Release v1.0

1. The variable 𝐼𝐿𝑟:

˙𝐼𝐿𝑟 =
1

𝑇𝐿𝑟
(−𝐼𝐿𝑟 + 𝐹𝑟)

𝐼𝐿𝑟(𝑡) = 𝐼𝐿𝑟(0) +

∫︁ Δ𝑡

0

1

𝑇𝐿𝑟
(−𝐼𝐿𝑟 + 𝐹𝑟)𝑑𝑡

𝐼𝐿𝑟,0 = 𝐼𝐿𝑟(0)𝐼𝐿𝑟(0)𝐼𝐿𝑟(0)

𝐼𝐿𝑟,1 =

∫︁ Δ𝑡

0

1

𝑇𝐿𝑟
(−𝐼𝐿𝑟(0) + 𝐹𝑟)𝑑𝑡

=
1

𝑇𝐿𝑟
(−𝐼𝐿𝑟(0) + 𝐹𝑟)

1

𝑇𝐿𝑟
(−𝐼𝐿𝑟(0) + 𝐹𝑟)

1

𝑇𝐿𝑟
(−𝐼𝐿𝑟(0) + 𝐹𝑟)∆𝑡

𝐼𝐿𝑟,2 =

∫︁ Δ𝑡

0

1

𝑇𝐿𝑟
(−𝐼𝐿𝑟,1)𝑑𝑡

=

∫︁ Δ𝑡

0

1

𝑇 2
𝐿𝑟

(𝐼𝐿𝑟(0) − 𝐹𝑟)∆𝑡)𝑑𝑡

=
1

𝑇 2
𝐿𝑟

[︁1

2
(𝐼𝐿𝑟(0) − 𝐹𝑟)𝑡

2
]︁Δ𝑡
0

=
1

𝑇 2
𝐿𝑟

[︁1

2
(𝐼𝐿𝑟(0) − 𝐹𝑟)∆𝑡

2
]︁1

𝑇 2
𝐿𝑟

[︁1

2
(𝐼𝐿𝑟(0) − 𝐹𝑟)∆𝑡

2
]︁1

𝑇 2
𝐿𝑟

[︁1

2
(𝐼𝐿𝑟(0) − 𝐹𝑟)∆𝑡

2
]︁

or
1

𝑇𝐿𝑟
(−1

2
𝐼𝐿𝑟,1)

1

𝑇𝐿𝑟
(−1

2
𝐼𝐿𝑟,1)

1

𝑇𝐿𝑟
(−1

2
𝐼𝐿𝑟,1)∆𝑡2

2. The variable 𝐼𝐿𝑖:

˙𝐼𝐿𝑖 =
1

𝑇𝐿𝑖
(−𝐼𝐿𝑖 + 𝐹𝑖)

𝐼𝐿𝑖(𝑡) = 𝐼𝐿𝑖(0) +

∫︁ Δ𝑡

0

1

𝑇𝐿𝑖
(−𝐼𝐿𝑖 + 𝐹𝑖)𝑑𝑡

𝐼𝐿𝑖,0 = 𝐼𝐿𝑖(0)𝐼𝐿𝑖(0)𝐼𝐿𝑖(0)

𝐼𝐿𝑖,1 =

∫︁ Δ𝑡

0

1

𝑇𝐿𝑖
(−𝐼𝐿𝑖(0) + 𝐹𝑖)𝑑𝑡

=
1

𝑇𝐿𝑖
(−𝐼𝐿𝑖(0) + 𝐹𝑖)∆𝑡

1

𝑇𝐿𝑖
(−𝐼𝐿𝑖(0) + 𝐹𝑖)∆𝑡

1

𝑇𝐿𝑖
(−𝐼𝐿𝑖(0) + 𝐹𝑖)∆𝑡

𝐼𝐿𝑖,2 =

∫︁ Δ𝑡

0

1

𝑇𝐿𝑖
(−𝐼𝐿𝑖,1)𝑑𝑡

=

∫︁ Δ𝑡

0

1

𝑇 2
𝐿𝑖

(𝐼𝐿𝑖(0) − 𝐹𝑖)∆𝑡)𝑑𝑡

=
1

𝑇 2
𝐿𝑖

[︁1

2
(𝐼𝐿𝑖(0) − 𝐹𝑖)𝑡

2
]︁Δ𝑡
0

=
1

𝑇 2
𝐿𝑖

[︁1

2
(𝐼𝐿𝑖(0) − 𝐹𝑖)∆𝑡

2
]︁1

𝑇 2
𝐿𝑖

[︁1

2
(𝐼𝐿𝑖(0) − 𝐹𝑖)∆𝑡

2
]︁1

𝑇 2
𝐿𝑖

[︁1

2
(𝐼𝐿𝑖(0) − 𝐹𝑖)∆𝑡

2
]︁

or
1

𝑇𝐿𝑖
(−1

2
𝐼𝐿𝑖,1)

1

𝑇𝐿𝑖
(−1

2
𝐼𝐿𝑖,1)

1

𝑇𝐿𝑖
(−1

2
𝐼𝐿𝑖,1)∆𝑡2

8.2. Semi-Analytical Solution Method 37

rapid, Release v1.0

8.2.2 Homotopy Analysis Method

This section briefly reviews the basic concept of Homotopy analysis method (HAM). Consider a nonlinear differential
equation in a general form:

𝑁 [𝑥(𝑡)] = 0

where 𝑁 is a nonlinear operator, 𝑡 denotes time, and 𝑥(𝑡) is an unknown variable. Let 𝑥0(𝑡) denote an initial guess of
the exact solution 𝑥(𝑡), and 𝐿 denote an auxiliary linear operator with the property

𝐿[𝑓(𝑡)] = 0 when 𝑓(𝑡) = 0

Then, using 𝑞 ∈ [0, 1] as an embedding parameter, 𝑐 as an auxiliary parameter (referred to as the convergence-control
parameter), and 𝐻(𝑡) as a nonzero auxiliary function, one can construct a homotopy as follows:

ℋ[𝜑(𝑡; 𝑞);𝑥0(𝑡), 𝐻(𝑡), 𝑐, 𝑞] =

(1 − 𝑞)𝐿[𝜑(𝑡; 𝑞) − 𝑥0(𝑡)] − 𝑞𝑐𝐻(𝑡)𝑁 [(𝜑(𝑡; 𝑞)]

By enforcing [eq:HAM3] to be zero, one may obtain a family of equations, the so-called zero-order deformation equa-
tion

(1 − 𝑞)𝐿[𝜑(𝑡; 𝑞) − 𝑥0(𝑡)] = 𝑞𝑐𝐻(𝑡)𝑁 [𝜑(𝑡; 𝑞)]

where 𝜑(𝑡; 𝑞) is the solution which depends on the initial guess 𝑥0(𝑡), the auxiliary function 𝐻(𝑡), the auxiliary pa-
rameter 𝑐, and the embedding parameter 𝑞 ∈ [0, 1]. Due to these parameters (e.g., the parameter 𝑐), the HAM is more
general and flexible than other traditional methods. So, when 𝑞 = 0, [eq:HAM4] becomes 𝐿[𝜑(𝑡; 0) − 𝑥0(𝑡)] = 0.
Using [eq:HAM2], this gives

𝑓(𝑡) = 0 ⇒ 𝜑(𝑡; 0) = 𝑥0(𝑡)

When 𝑞 = 1, since 𝑐 ̸= 0 and 𝐻(𝑡) ̸= 0, [eq:HAM4] is equivalent to 𝑁 [𝜑(𝑡; 1)] = 0 which exactly corresponds to the
original equation [eq:HAM1] if 𝜑(𝑡; 1) = 𝑥(𝑡).

Therefore, the solution 𝜑(𝑡, 𝑞) varies continuously from the initial condition 𝑥0(𝑡) to the exact solution 𝑥(𝑡) of the
original equation [eq:HAM1] as the embedding parameter 𝑞 increases from 0 to 1. Thus, one can obtain a family of
solution curves by changing the values of 𝑐 and𝐻(𝑡), which provides a simple way to control and adjust the convergence
of the approximate solution series. Here, the function 𝜑(𝑡, 𝑞) can be approximated by many different base functions
(e.g., polynomial, fractional, exponential function). By Taylor’s theorem, we expand 𝜑(𝑡, 𝑞) in a power series of the
embedding parameter 𝑞 as follows:

𝜑(𝑡; 𝑞) = 𝑥0(𝑡) +

∞∑︁
𝑖=1

𝑥𝑖𝑞
𝑖

assuming that 𝑥𝑖 exists and is defined as

𝑥𝑖 =
1

𝑖!

𝜕𝑖𝜑(𝑡; 𝑞)

𝜕𝑞𝑖

⃒⃒⃒
𝑞=0

Suppose that the auxiliary linear operator 𝐿, parameter 𝑐, and function 𝐻(𝑡) are properly chosen so that the power
series [eq:HAM10] of 𝜑(𝑡; 𝑞) converges at 𝑞 = 1. Then, one can obtain the solution series

𝜑(𝑡; 1) = 𝑥(𝑡) = 𝑥0(𝑡) +

∞∑︁
𝑖=1

𝑥𝑖(𝑡)

Next, the terms 𝑥𝑖(𝑡) are determined by the so-called high-order deformation equations. By differentiating the zero-
order deformation equation [eq:HAM4] 𝑖 times with respect to 𝑞, and then dividing it by 𝑖! and setting 𝑞 = 0, one can
construct the 𝑖th-order deformation equation

𝐿[𝑥𝑖(𝑡) −𝒳𝑖𝑥𝑖−1(𝑡)] = 𝑐𝑅𝑖(𝑡)

38 Chapter 8. Solution Method

rapid, Release v1.0

where 𝒳𝑖 is defined by {︃
0, 𝑖 ≤ 1

1, 𝑖 > 1

and 𝑅𝑖(𝑡) is defined as

𝑅𝑖(𝑡) =
1

(𝑖− 1)!

𝜕𝑖−1𝑁 [𝜑(𝑡; 𝑞)]

𝜕𝑞𝑖−1

⃒⃒⃒
𝑞=0

Hence, one can obtain 𝑥𝑖(𝑡) by solving [eq:HAM12], one after the other in order. Notice that we select the polynomial
as the base function, and thus 𝐻(𝑡) is uniquely defined as 𝐻(𝑡) = 1 based on [Lia09]. Interestingly, it has been
demonstrated in [Lia03] that the ADM described in the previous section, if using polynomial as the base function,
is a special case of the HAM with 𝑐=−1. Likewise, the approximate solution of the HAM can be obtained by the
truncated series

∑︀𝑚
𝑖=0 𝑥𝑖 = 𝑥𝑚𝑆𝐴𝑆(𝑡), and the coefficients 𝑎0, 𝑎1, ..., 𝑎𝑚 in [eq:SAS1] may correspond to the terms

𝑥0, 𝑥1, ..., 𝑥𝑚 in [eq:HAM11]. Similar to the MADM, the MHAM uses the HAM over multiple intervals of time.
Similar to the MADM, the MHAM uses the HAM over multiple intervals of time.

The derivation of MHAM terms for each device:

Now, let us focus on the development of the HAM which can be summarized in the following steps:

1. Step 1: Rearrange the given differential equations in the form of 𝑁 [𝑥(𝑡)] = 0, where 𝑁 is a nonlinear operator.

2. Step 2: Select the linear operator 𝐿 and apply the transformation 𝑥(𝑡) = 𝑥𝑖(𝑇) for the time interval [𝑡𝑖−1, 𝑡𝑖].
Usually, the highest order derivative is taken as the linear operator 𝐿.

3. Step 3: Form the 𝑚-term approximate series solution acccording to 𝜑(𝑡; 𝑞, ℎ) = 𝑥0(𝑡) +
∑︀+∞
𝑚=1 𝑥𝑚𝑞

𝑚

4. Step 4: From the 𝑚th order deformation according to 𝐿[𝑥𝑚(𝑡) − 𝜒𝑚𝑥𝑚−1(𝑡)] = ℎℛ𝑚(𝑡). where 𝜒𝑚 = 0 for
𝑚 ≤ 1 and 𝜒𝑚 = 1 for 𝑚 > 1.

and

ℛ𝑚(𝑡) =
1

(𝑚− 1)!

𝜕𝑚−1𝑁 [𝜑(𝑡; 𝑞, ℎ)]

𝜕𝑞𝑚−1

⃒⃒⃒
𝑞=0

5. Step 5: Obtain the 𝑚-term approximation from step 3 by setting 𝑞 = 1.

We apply these steps to each device. As an example, we describe the derivation of a few terms for turbine and generator
as follows:

• Turbine:
Consider the turbine model

˙𝑇𝑚 =
1

𝑇𝑐ℎ
(−𝑇𝑚 + 𝑃𝑠𝑣)

𝑆𝑡𝑒𝑝 1: This equation is rearranged as follows:

𝑁 = ˙𝑇𝑚 − 1

𝑇𝑐ℎ
(−𝑇𝑚 + 𝑃𝑠𝑣)

𝑆𝑡𝑒𝑝 2: The linear operator 𝐿 for the time interval [𝑡𝑖−1, 𝑡𝑖] is selected as:

𝐿[𝑇𝑚] = ˙𝑇𝑚 =
𝑑𝑇𝑚
𝑑𝑇

, ∀0 ≤ 𝑇 ≤ 𝑡𝑖 − 𝑡𝑖−1

8.2. Semi-Analytical Solution Method 39

rapid, Release v1.0

𝑆𝑡𝑒𝑝 3: 4-term approximation is obtained as follows:

𝜑(𝑡; 𝑞) = 𝑇𝑚 = 𝑇𝑚,0 + 𝑇𝑚,1𝑞 + 𝑇𝑚,2𝑞
2 + 𝑇𝑚,3𝑞

3

where 𝑇𝑚,0 = 𝑇𝑚(𝑡𝑖−1) in the interval [𝑡𝑖−1, 𝑡𝑖].

𝑆𝑡𝑒𝑝 4: The 𝑚th order deformation can be formed for a 4-term approximation as follows:

𝐿[𝑇𝑚,1 − 𝑇𝑚,0] = ℎℛ1

𝐿[𝑇𝑚,2 − 𝑇𝑚,1] = ℎℛ2

𝐿[𝑇𝑚,3 − 𝑇𝑚,2] = ℎℛ3

Here, the 4-term approximation for 𝑇𝑚 given in [eq:4terms] is substituted for ℛ𝑚. Thus,

𝐿[𝑇𝑚,1 − 𝑇𝑚,0] = ℎℛ1

= ℎ
[︁𝜕(�̇�𝑚,0 + �̇�𝑚,1𝑞 + �̇�𝑚,2𝑞

2 + �̇�𝑚,3𝑞
3)

𝜕𝑞1−1

⃒⃒⃒
𝑞=0

+ 𝜕
1
𝑇𝑐ℎ

(︀
𝑇𝑚,0 + 𝑇𝑚,1𝑞 + 𝑇𝑚,2𝑞

2 + 𝑇𝑚,3𝑞
3
)︀

𝜕𝑞1−1

⃒⃒⃒
𝑞=0

− 𝜕
1
𝑇𝑐ℎ

(︀
𝑃𝑠𝑣,0 + 𝑃𝑠𝑣,1𝑞 + 𝑃𝑠𝑣,2𝑞

2 + 𝑃𝑠𝑣,3𝑞
3
)︀

𝜕𝑞1−1

⃒⃒⃒
𝑞=0

]︁
Therefore,

𝐿[𝑇𝑚,1 − 𝑇𝑚,0] = ℎ
[︁
�̇�𝑚,0 +

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
On integrating and substituting �̇�𝑚,0 = 0,

𝑑

𝑑𝑡
𝑇𝑚,1 −

𝑑

𝑑𝑡
𝑇𝑚,0 = ℎ

[︁
+

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
𝑑

𝑑𝑡
𝑇𝑚,1 = ℎ

[︁
+

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
𝑇𝑚,1 =

∫︁ Δ𝑡

0

ℎ
[︁

+
1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
𝑑𝑡

𝑇𝑚,1 = ℎ
[︁

+
1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
∆𝑡ℎ

[︁
+

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
∆𝑡ℎ

[︁
+

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
∆𝑡

Similarly, 𝑇𝑚,2 can be obtained as follows:

𝐿[𝑇𝑚,2 − 𝑇𝑚,1] = ℎℛ2

= ℎ
[︁𝜕(�̇�𝑚,0 + �̇�𝑚,1𝑞 + �̇�𝑚,2𝑞

2 + �̇�𝑚,3𝑞
3)

𝜕𝑞1

⃒⃒⃒
𝑞=0

+ 𝜕
1
𝑇𝑐ℎ

(︀
𝑇𝑚,0 + 𝑇𝑚,1𝑞 + 𝑇𝑚,2𝑞

2 + 𝑇𝑚,3𝑞
3
)︀

𝜕𝑞1

⃒⃒⃒
𝑞=0

− 𝜕
1
𝑇𝑐ℎ

(︀
𝑃𝑠𝑣,0 + 𝑃𝑠𝑣,1𝑞 + 𝑃𝑠𝑣,2𝑞

2 + 𝑃𝑠𝑣,3𝑞
3
)︀

𝜕𝑞1

⃒⃒⃒
𝑞=0

]︁
Therefore,

𝐿[𝑇𝑚,2 − 𝑇𝑚,1] = ℎ
[︁
�̇�𝑚,1 + 2�̇�𝑚,2𝑞 + 3�̇�𝑚,3𝑞

2 +
1

𝑇𝑐ℎ
(𝑇𝑚,1 + 2𝑇𝑚,2𝑞 + 3𝑇𝑚,3𝑞

2)

− 1

𝑇𝑐ℎ
(𝑃𝑠𝑣,1 + 2𝑃𝑠𝑣,2𝑞 + 3𝑃𝑠𝑣,3𝑞

2)
]︁
𝑞=0

= ℎ
[︁
�̇�𝑚,1 +

1

𝑇𝑐ℎ
𝑇𝑚,1 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1

]︁
40 Chapter 8. Solution Method

rapid, Release v1.0

On integrating,

𝑑

𝑑𝑡
𝑇𝑚,2 −

𝑑

𝑑𝑡
𝑇𝑚,1 = ℎ

[︁
�̇�𝑚,1 +

1

𝑇𝑐ℎ
𝑇𝑚,1 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1

]︁
𝑑

𝑑𝑡
𝑇𝑚,2 = (1 + ℎ)�̇�𝑚,1 + ℎ

1

𝑇𝑐ℎ
𝑇𝑚,1 − ℎ

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1

𝑇𝑚,2 =

∫︁ Δ𝑡

0

[︁
(1 + ℎ)�̇�𝑚,1 + ℎ

1

𝑇𝑐ℎ
𝑇𝑚,1 − ℎ

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1

]︁
𝑑𝑡

𝑇𝑚,2 = (1 + ℎ)𝑇𝑚,1⏟ ⏞
𝑇 1
𝑚,2

+ℎ
1

2

1

𝑇𝑐ℎ
𝑇𝑚,1∆𝑡− ℎ

1

2

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1∆𝑡⏟ ⏞

𝑇 2
𝑚,2

(1 + ℎ)𝑇𝑚,1⏟ ⏞
𝑇 1
𝑚,2

+ℎ
1

2

1

𝑇𝑐ℎ
𝑇𝑚,1∆𝑡− ℎ

1

2

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1∆𝑡⏟ ⏞

𝑇 2
𝑚,2

(1 + ℎ)𝑇𝑚,1⏟ ⏞
𝑇 1
𝑚,2

+ℎ
1

2

1

𝑇𝑐ℎ
𝑇𝑚,1∆𝑡− ℎ

1

2

1

𝑇𝑐ℎ
𝑃𝑠𝑣,1∆𝑡⏟ ⏞

𝑇 2
𝑚,2

Similarly, 𝑇𝑚,3 can be obtained as follows:

𝐿[𝑇𝑚,3 − 𝑇𝑚,2] = ℎℛ3

= ℎ
1

2

[︁𝜕(�̇�𝑚,0 + �̇�𝑚,1𝑞 + �̇�𝑚,2𝑞
2 + �̇�𝑚,3𝑞

3)

𝜕𝑞2

⃒⃒⃒
𝑞=0

+ 𝜕
1
𝑇𝑐ℎ

(︀
𝑇𝑚,0 + 𝑇𝑚,1𝑞 + 𝑇𝑚,2𝑞

2 + 𝑇𝑚,3𝑞
3
)︀

𝜕𝑞2

⃒⃒⃒
𝑞=0

− 𝜕
1
𝑇𝑐ℎ

(︀
𝑃𝑠𝑣,0 + 𝑃𝑠𝑣,1𝑞 + 𝑃𝑠𝑣,2𝑞

2 + 𝑃𝑠𝑣,3𝑞
3
)︀

𝜕𝑞2

⃒⃒⃒
𝑞=0

]︁
Therefore,

𝐿[𝑇𝑚,3 − 𝑇𝑚,2] =ℎ
1

2

[︁
2�̇�𝑚,2 + 6�̇�𝑚,3𝑞 +

1

𝑇𝑐ℎ
(2𝑇𝑚,2 + 6𝑇𝑚,3𝑞)

− 1

𝑇𝑐ℎ
(2𝑃𝑠𝑣,2 + 6𝑃𝑠𝑣,3𝑞)

]︁
𝑞=0

=ℎ
1

2

[︁
2�̇�𝑚,2 + 2

1

𝑇𝑐ℎ
𝑇𝑚,2 − 2

1

𝑇𝑐ℎ
𝑃𝑠𝑣,2

]︁
=ℎ

[︁
�̇�𝑚,2 +

1

𝑇𝑐ℎ
𝑇𝑚,2 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,2

]︁
On integrating,

𝑑

𝑑𝑡
𝑇𝑚,3 −

𝑑

𝑑𝑡
𝑇𝑚,2 = ℎ

[︁
�̇�𝑚,2 +

1

𝑇𝑐ℎ
𝑇𝑚,2 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,2

]︁
𝑑

𝑑𝑡
𝑇𝑚,3 = (1 + ℎ)�̇�𝑚,2 + ℎ

1

𝑇𝑐ℎ
𝑇𝑚,2 − ℎ

1

𝑇𝑐ℎ
𝑃𝑠𝑣,2

𝑇𝑚,3 =

∫︁ Δ𝑡

0

[︁
(1 + ℎ)�̇�𝑚,2 + ℎ

1

𝑇𝑐ℎ
𝑇𝑚,2 − ℎ

1

𝑇𝑐ℎ
𝑃𝑠𝑣,2

]︁
𝑑𝑡

𝑇𝑚,3 = (1 + ℎ)𝑇𝑚,2 + ℎ
1

𝑇𝑐ℎ
* 1

2
𝑇 1
𝑚,2∆𝑡+ ℎ

1

𝑇𝑐ℎ
* 1

3
𝑇 2
𝑚,2∆𝑡(1 + ℎ)𝑇𝑚,2 + ℎ

1

𝑇𝑐ℎ
* 1

2
𝑇 1
𝑚,2∆𝑡+ ℎ

1

𝑇𝑐ℎ
* 1

3
𝑇 2
𝑚,2∆𝑡(1 + ℎ)𝑇𝑚,2 + ℎ

1

𝑇𝑐ℎ
* 1

2
𝑇 1
𝑚,2∆𝑡+ ℎ

1

𝑇𝑐ℎ
* 1

3
𝑇 2
𝑚,2∆𝑡

−ℎ 1

𝑇𝑐ℎ
* 1

2
𝑃 1
𝑠𝑣,2∆𝑡− ℎ

1

𝑇𝑐ℎ
* 1

3
𝑃 2
𝑠𝑣,2∆𝑡−ℎ 1

𝑇𝑐ℎ
* 1

2
𝑃 1
𝑠𝑣,2∆𝑡− ℎ

1

𝑇𝑐ℎ
* 1

3
𝑃 2
𝑠𝑣,2∆𝑡−ℎ 1

𝑇𝑐ℎ
* 1

2
𝑃 1
𝑠𝑣,2∆𝑡− ℎ

1

𝑇𝑐ℎ
* 1

3
𝑃 2
𝑠𝑣,2∆𝑡

The solution at each time step is obtained as:

𝑇𝑚(∆𝑡) = 𝑇𝑚,0 + 𝑇𝑚,1 + 𝑇𝑚,2 + 𝑇𝑚,3

• Synchronous Machine:
Consider the differential equation of 𝐸dum

8.2. Semi-Analytical Solution Method 41

rapid, Release v1.0

˙𝐸dum =
1

𝑇 dum

(︁
− 𝐸dum − (𝑋

′′

𝑞𝑠 −𝑋
′′

𝑑𝑠)𝑖𝑞

)︁
𝑆𝑡𝑒𝑝 4: The 𝑚th order deformation can be formed for a 4-term approximation as follows:

𝐿[𝐸dum
1 − 𝐸dum

0] = ℎℛ1

= ℎ
[︁𝜕(�̇�dum

0 + �̇�dum
1 𝑞 + �̇�dum

2 𝑞2 + �̇�dum
3 𝑞3)

𝜕𝑞1−1

⃒⃒⃒
𝑞=0

+ 𝜕
1

𝑇𝑑𝑢𝑚

(︀
𝐸dum

0 + 𝐸dum
1 𝑞 + 𝐸dum

2 𝑞2 + 𝐸dum
3 𝑞3

)︀
𝜕𝑞1−1

⃒⃒⃒
𝑞=0

+ 𝜕
1

𝑇𝑑𝑢𝑚
𝑖𝑞
(︀
𝑋

′′

𝑞𝑠,0 +𝑋
′′

𝑞𝑠,1𝑞 +𝑋
′′

𝑞𝑠,2𝑞
2 +𝑋

′′

𝑞𝑠,3𝑞
3
)︀

𝜕𝑞1−1

⃒⃒⃒
𝑞=0

− 𝜕
1

𝑇𝑑𝑢𝑚
𝑖𝑞
(︀
𝑋

′′

𝑑𝑠,0 +𝑋
′′

𝑑𝑠,1𝑞 +𝑋
′′

𝑑𝑠,2𝑞
2 +𝑋

′′

𝑑𝑠,3𝑞
3
)︀

𝜕𝑞1−1

⃒⃒⃒
𝑞=0

]︁
Therefore,

𝐿[𝐸dum
1 − 𝐸dum

0] = ℎ
[︁
�̇�dum

0 +
1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
On integrating and substituting �̇�dum

0 = 0,

𝑑

𝑑𝑡
𝐸dum

1 − 𝑑

𝑑𝑡
𝐸dum

0 = ℎ
[︁ 1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
𝑑

𝑑𝑡
𝐸dum

1 = ℎ
[︁ 1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
𝐸dum

1 =

∫︁ Δ𝑡

0

ℎ
[︁ 1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
𝑑𝑡

𝐸dum
1 = ℎ

[︁ 1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
∆𝑡ℎ

[︁ 1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
∆𝑡ℎ

[︁ 1

𝑇𝑑𝑢𝑚
𝐸dum

0 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,0 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,0

]︁
∆𝑡

Similarly, 𝐸dum
2 can be obtained as follows:

𝐿[𝐸dum
2 − 𝐸dum

1] = ℎℛ2

= ℎ
[︁𝜕(�̇�dum

0 + �̇�dum
1 𝑞 + �̇�dum

2 𝑞2 + �̇�dum
3 𝑞3)

𝜕𝑞1

⃒⃒⃒
𝑞=0

+ 𝜕
1

𝑇𝑑𝑢𝑚

(︀
𝐸dum

0 + 𝐸dum
1 𝑞 + 𝐸dum

2 𝑞2 + 𝐸dum
3 𝑞3

)︀
𝜕𝑞1−1

⃒⃒⃒
𝑞=0

+ 𝜕
1

𝑇𝑑𝑢𝑚
𝑖𝑞
(︀
𝑋

′′

𝑞𝑠,0 +𝑋
′′

𝑞𝑠,1𝑞 +𝑋
′′

𝑞𝑠,2𝑞
2 +𝑋

′′

𝑞𝑠,3𝑞
3
)︀

𝜕𝑞1

⃒⃒⃒
𝑞=0

− 𝜕
1

𝑇𝑑𝑢𝑚
𝑖𝑞
(︀
𝑋

′′

𝑑𝑠,0 +𝑋
′′

𝑑𝑠,1𝑞 +𝑋
′′

𝑑𝑠,2𝑞
2 +𝑋

′′

𝑑𝑠,3𝑞
3
)︀

𝜕𝑞1

⃒⃒⃒
𝑞=0

]︁

42 Chapter 8. Solution Method

rapid, Release v1.0

Therefore,

𝐿[𝐸dum
2 − 𝐸dum

1] = ℎ
[︁
�̇�dum

1 + 2�̇�dum
2 𝑞 + 3�̇�dum

3 𝑞2

+
1

𝑇𝑑𝑢𝑚
(𝐸dum

1 + 2𝐸dum
2 𝑞 + 3𝐸dum

3 𝑞2)

+
1

𝑇𝑑𝑢𝑚
𝑖𝑞(𝑋

′′

𝑞𝑠,1 + 2𝑋
′′

𝑞𝑠,2𝑞
2 + 3𝑋

′′

𝑞𝑠,3𝑞
2)

− 1

𝑇𝑑𝑢𝑚
𝑖𝑞(𝑋

′′

𝑑𝑠,1 + 2𝑋
′′

𝑑𝑠,2𝑞
2 + 3𝑋

′′

𝑑𝑠,3𝑞
2)
]︁
𝑞=0

= ℎ
[︁
�̇�dum

1 +
1

𝑇𝑑𝑢𝑚
𝐸dum

1 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,1 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,1

]︁
On integrating,

𝑑

𝑑𝑡
𝐸dum

2 − 𝑑

𝑑𝑡
𝐸dum

1 = ℎ
[︁
�̇�dum

1 +
1

𝑇𝑑𝑢𝑚
𝐸dum

1 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,1 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,1

]︁
𝑑

𝑑𝑡
𝐸dum

2 = (1 + ℎ)�̇�dum
1 + ℎ

1

𝑇𝑑𝑢𝑚
𝐸dum

1 + ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,1 − ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,1

𝐸dum
2 =

∫︁ Δ𝑡

0

[︁
(1 + ℎ)�̇�dum

1 + ℎ
1

𝑇𝑑𝑢𝑚
𝐸dum

1 + ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,1 − ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,1

]︁
𝑑𝑡

𝐸dum
2 = (1 + ℎ)𝐸dum

1⏟ ⏞
𝐸dum,1

2

(1 + ℎ)𝐸dum
1⏟ ⏞

𝐸dum,1
2

(1 + ℎ)𝐸dum
1⏟ ⏞

𝐸dum,1
2

+ ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝐸dum

1 ∆𝑡+ ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝑋

′′

𝑞𝑠,1∆𝑡− ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝑋

′′

𝑑𝑠,1∆𝑡⏟ ⏞
𝐸dum,2

2

ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝐸dum

1 ∆𝑡+ ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝑋

′′

𝑞𝑠,1∆𝑡− ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝑋

′′

𝑑𝑠,1∆𝑡⏟ ⏞
𝐸dum,2

2

ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝐸dum

1 ∆𝑡+ ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝑋

′′

𝑞𝑠,1∆𝑡− ℎ
1

2

1

𝑇𝑑𝑢𝑚
𝑋

′′

𝑑𝑠,1∆𝑡⏟ ⏞
𝐸dum,2

2

Similarly, 𝐸dum
3 can be obtained as follows:

𝐿[𝐸dum
3 − 𝐸dum

2] = ℎℛ3

= ℎ
1

2

[︁𝜕(�̇�dum
0 + �̇�dum

1 𝑞 + �̇�dum
2 𝑞2 + �̇�dum

3 𝑞3)

𝜕𝑞2

⃒⃒⃒
𝑞=0

+ 𝜕
1

𝑇𝑑𝑢𝑚

(︀
𝐸dum

0 + 𝐸dum
1 𝑞 + 𝐸dum

2 𝑞2 + 𝐸dum
3 𝑞3

)︀
𝜕𝑞2

⃒⃒⃒
𝑞=0

+ 𝜕
1

𝑇𝑑𝑢𝑚
𝑖𝑞
(︀
𝑋

′′

𝑞𝑠,0 +𝑋
′′

𝑞𝑠,1𝑞 +𝑋
′′

𝑞𝑠,2𝑞
2 +𝑋

′′

𝑞𝑠,3𝑞
3
)︀

𝜕𝑞2

⃒⃒⃒
𝑞=0

− 𝜕
1

𝑇𝑑𝑢𝑚
𝑖𝑞
(︀
𝑋

′′

𝑑𝑠,0 +𝑋
′′

𝑑𝑠,1𝑞 +𝑋
′′

𝑑𝑠,2𝑞
2 +𝑋

′′

𝑑𝑠,3𝑞
3
)︀

𝜕𝑞2

⃒⃒⃒
𝑞=0

]︁
Therefore,

𝐿[𝐸dum
3 − 𝐸dum

2] = ℎ
[︁
�̇�dum

2 +
1

𝑇𝑑𝑢𝑚
𝐸dum

2 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,2 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,2

]︁

8.2. Semi-Analytical Solution Method 43

rapid, Release v1.0

On integrating,

𝑑

𝑑𝑡
𝐸dum

3 − 𝑑

𝑑𝑡
𝐸dum

2 = ℎ
[︁
�̇�dum

2 +
1

𝑇𝑑𝑢𝑚
𝐸dum

2 +
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,2 −
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,2

]︁
𝑑

𝑑𝑡
𝐸dum

3 = (1 + ℎ)�̇�dum
2 + ℎ

1

𝑇𝑑𝑢𝑚
𝐸dum

2 + ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,2 − ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,2

𝐸dum
3 =

∫︁ Δ𝑡

0

[︁
(1 + ℎ)�̇�dum

2 + ℎ
1

𝑇𝑑𝑢𝑚
𝐸dum

2 + ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑞𝑠,2 − ℎ
1

𝑇𝑑𝑢𝑚
𝑖𝑞𝑋

′′

𝑑𝑠,2

]︁
𝑑𝑡

𝐸dum
3 = (1 + ℎ)𝐸dum

2 + ℎ
1

𝑇𝑑𝑢𝑚
* 1

2
𝐸dum,1

2 ∆𝑡+ ℎ
1

𝑇𝑑𝑢𝑚
* 1

2
𝐸dum,2

2 ∆𝑡(1 + ℎ)𝐸dum
2 + ℎ

1

𝑇𝑑𝑢𝑚
* 1

2
𝐸dum,1

2 ∆𝑡+ ℎ
1

𝑇𝑑𝑢𝑚
* 1

2
𝐸dum,2

2 ∆𝑡(1 + ℎ)𝐸dum
2 + ℎ

1

𝑇𝑑𝑢𝑚
* 1

2
𝐸dum,1

2 ∆𝑡+ ℎ
1

𝑇𝑑𝑢𝑚
* 1

2
𝐸dum,2

2 ∆𝑡

+ℎ
1

𝑇𝑑𝑢𝑚
* 𝑖𝑞 * 1

2
𝑋

′′,1
𝑞𝑠,2∆𝑡+ ℎ

1

𝑇𝑑𝑢𝑚
* 1

3
𝑋

′′,2
𝑞𝑠,2∆𝑡+ℎ

1

𝑇𝑑𝑢𝑚
* 𝑖𝑞 * 1

2
𝑋

′′,1
𝑞𝑠,2∆𝑡+ ℎ

1

𝑇𝑑𝑢𝑚
* 1

3
𝑋

′′,2
𝑞𝑠,2∆𝑡+ℎ

1

𝑇𝑑𝑢𝑚
* 𝑖𝑞 * 1

2
𝑋

′′,1
𝑞𝑠,2∆𝑡+ ℎ

1

𝑇𝑑𝑢𝑚
* 1

3
𝑋

′′,2
𝑞𝑠,2∆𝑡

−ℎ 1

𝑇𝑑𝑢𝑚
* 𝑖𝑞 * 1

2
𝑋

′′,1
𝑑𝑠,2∆𝑡+ ℎ

1

𝑇𝑑𝑢𝑚
* 1

3
𝑋

′′,2
𝑑𝑠,2∆𝑡−ℎ 1

𝑇𝑑𝑢𝑚
* 𝑖𝑞 * 1

2
𝑋

′′,1
𝑑𝑠,2∆𝑡+ ℎ

1

𝑇𝑑𝑢𝑚
* 1

3
𝑋

′′,2
𝑑𝑠,2∆𝑡−ℎ 1

𝑇𝑑𝑢𝑚
* 𝑖𝑞 * 1

2
𝑋

′′,1
𝑑𝑠,2∆𝑡+ ℎ

1

𝑇𝑑𝑢𝑚
* 1

3
𝑋

′′,2
𝑑𝑠,2∆𝑡

The solution at each time step is obtained as:

𝐸dum(∆𝑡) = 𝐸dum
0 + 𝐸dum

1 + 𝐸dum
2 + 𝐸dum

3

8.2.3 Summary

Notice that both the MADM and the MHAM, described so far, are the time-power series-based SAS method such that
each term is a function of time, initial conditions, and system parameters. In the MADM, we separated each term and
time as a constant and a variable, respectively (e.g., 𝑃𝑠𝑣,2 and ∆𝑡2) since the 𝑖th-order term is only multiplied by the
𝑖th power of ∆𝑡. However, in the MHAM, this nice separation does not hold, and each term is a function of ∆𝑡.

Table [tab:comparison] summarizes the derived terms of each method with 𝑚 = 2, 2-term approximate solution for
the time interval [𝑡𝑛, 𝑡𝑛+1]. One can recognize that terms between the MADM and the MHAM are equivalent when
ℎ = −1. Moreover, since the proposed approach to derive power series terms for each method fully considers the
coupling variables among devices such as turbine, governor, generator and excitation, it is more accurate than and
complements the approach described in [G+17] and [DG19] that have ignored coupling variables among devices.

2*Terms Method
MADM MHAM

1*𝑃𝑠𝑣,0 𝑃𝑠𝑣(𝑡𝑛) 𝑃𝑠𝑣(𝑡𝑛)

1*𝑃𝑠𝑣,1 1
𝑇𝑠𝑣

(︁
− 𝑃𝑠𝑣,0 + 𝑃𝑐 − 𝜔0

𝑅𝐷

)︁
∆𝑡 ℎ 1

𝑇𝑠𝑣

(︀
𝑃𝑠𝑣,0 − 𝑃𝑐 + 𝜔0

𝑅𝐷

)︀
∆𝑡

1*𝑃𝑠𝑣,2 1
𝑇𝑠𝑣

1
2

(︁
− 𝑃𝑠𝑣,1 − 𝜔1

𝑅𝐷

)︁
∆𝑡 (1 + ℎ)𝑃𝑠𝑣,1 + ℎ 1

𝑇𝑠𝑣

1
2 (𝑃𝑠𝑣,1 + 𝜔1

𝑅𝐷
)∆𝑡

[tab:comparison]

44 Chapter 8. Solution Method

CHAPTER

NINE

SIMULATION RESULTS

This section presents numerical case studies investigating the Parareal algorithm for power system dynamic simulations.
We consider two test networks, the New England 10-generator 39-bus system [Pad02] as a small test network, and the
Polish 327-generator 2383-bus system [ZMST11] as a large test network. Simulations are performed on Intel Core i7
2.59 GHz processors. The following disturbances are considered: 3-phase faults on buses with 4 cycles fault duration;
3-phase faults on branches with 4 cycles fault duration; and 3-phase faults on branches followed by tripping of that
branch with 4 cycles fault duration. This section provides the representative result with the 3-phase fault at the bus 1
with 4 cycles since extensive numerical experiments showed a very similar pattern of simulation results across many
disturbances.

Considering the allowable processors with a personal laptop in Python, the number of processors for parallel computing
of the fine solver is chosen as 50. The 10𝑠 simulation is conducted and thus divided into 50 sub-intervals. For each
processor, 100 sub-intervals are used for the fine solver, indicating 𝛿𝑡 = 10

50×100 = 0.002𝑠, but we vary the number of
sub-intervals for the coarse operator.

9.1 Validation of Parareal Algorithm

9.1.1 Results with the New England 10-Generator 39-Bus System

fig-nedelta-fig-neslip shows simulation results of Parareal algorithm for the 10𝑠 simulation with the New Eng-
land system. This analysis uses 10 sub-intervals for the coarse operators in each processor, and the true solution is
obtained using the standard sequential RK4 method with the time step of 0.002𝑠. The 𝑚 = 3 is used for the number
of terms for both the MADM and MHAM. For the MAHM, ℎ = −0.9 is used. As depicted, rotor angle and slip speed
at bus 1 of the Parareal solution converged to the true solution with all three coarse operators. We have checked this
convergence for other variables and disturbances to validate the convergence of Parareal algorithm.

9.1.2 Results with the Polish System, 327-Generator 2383-Bus

To further evaluate the performance of the Parareal algorithm, we have considered the large Polish system. The simu-
lation setup is the same as the one used in Section 7.1.1. fig-pdelta-fig-pslip shows the convergence of Parareal
algorithm for the 10𝑠 simulation. Similarly, we have also checked this convergence for other variables and disturbances
to validate the convergence of Parareal algorithm for the Polish system.

45

rapid, Release v1.0

46 Chapter 9. Simulation Results

rapid, Release v1.0

9.1. Validation of Parareal Algorithm 47

rapid, Release v1.0

48 Chapter 9. Simulation Results

rapid, Release v1.0

9.1. Validation of Parareal Algorithm 49

rapid, Release v1.0

50 Chapter 9. Simulation Results

CHAPTER

TEN

ACKNOWLEDGMENTS

The project was funded by the U.S. Department of Energy (DOE) Office of Electricity, Advanced Grid Research and
Development Division. The authors acknowledge Dr. Ali Ghassemian from the DOE Office of Electricity for his
continuing support and guidance.

51

rapid, Release v1.0

52 Chapter 10. Acknowledgments

CHAPTER

ELEVEN

PYTHON FILES AND FUNCTIONS

This appendix lists all of the python files and functions that the toolbox provides, except for those that are not required
for a high level understanding of the toolbox. In most cases, the function is found in a python “py” file of the same
name in the directory of the distribution.

11.1 Quick Start Guide

To get started, extract the zip archive of the python functions and IEEE testcases to a convenient place.

11.2 Soution Approach

1. para_real.py
Main python code to run the simulation using Parareal algorithm. As an example, the simulation can be run
from the command line with following arguments.
mpiexec -n 50 python para_real.py 0 1 --nCoarse 10 --nFine 100 --tol 0.01 --tolcheck
maxabs --debug 1 --fault fault.json --dist dist.json -o result.csv

This runs RAPID on 50 processors, which corresponds to 50 subintervals, with defined time increments (i.e.,
10 time increments for the coarse operator in each of 50 subintervals and 100 time increments for the fine
operator in each of 50 subintervals), using tolerance of 0.01 for maximum absolute value of the difference
between iterations, reads fault scenarios defined in the fault.json file, includes the distribution network defined
in the dist.json file, and then saves solutions into the result.csv file.

11.3 Function Descriptions

The function descriptions of this section are based on the python codes contained in the Parareal solution approach.

1. PowerModel.py
Read data and do post-processing (e.g., the calculation of initial conditions and define indices) before the
simulation.

• makeYbus.py
Construct the 𝑌𝑏𝑢𝑠 matrix.

• makeSbus.py
Construct the complex bus power (Sbus) injecton vector

• newtonpf.py
Run Newton Raphson to solve the power flow problem.

53

rapid, Release v1.0

• pfsoln.py
Organize the power flow solution.

2. pdefault.py
Using the “argparse” module, define command-line arguments.

3. packer.py
Pack or unpack variables.

4. Fault.py
Define the fault and modify the parameters accordingly for the post-fault simulation.

• fault.json
The usage of the json module that the user can define faults in detail with many different attributes (e.g.,
fault type, start time, and end time) and interface with Python.

• ffault.py
According to the fault type, modify the 𝑌𝑏𝑢𝑠 matrix and other parameters.

5. Coarse.py
Determine the solution method to be used for the coarse operator.

6. Fine.py
Determine the solution method to be used for the fine operator.

7. fn.py
Define the solution method.

• fnRK4
The Runge-Kutta 4th order method.

• fnTrap
The Midpoint-Trapezoidal predictor-corrector (Trap) method.

• fnTrap_adap
The adaptive Trap method with approximate models by linearizing the underlying physics within
relatively less important regions.

• fnADM
The Adomian decomposition method.

• fnHAM
The Homopoty analysis method.

11.4 Data

The toolbox takes as an input a MAT file written in the MATLAB language. Currently, these MAT files are loaded
using the “loadmat” module from Scipy in the Python programming language.

1. Data_NE
The IEEE New England 10-generator 39-bus test network [Pad02] as a small-scale test network.

2. Data_POLISH
The IEEE Polish 327-generator 2383-bus system [ZMST11] as a large-scale test network.

54 Chapter 11. Python Files and Functions

rapid, Release v1.0

11.5 SAS method options

The two SAS methods employed can adjust the number of SAS terms (and the auxiliary parameter ℎ for the HAM
method) to affect the convergence rate (and region).

[description]font=

1. ADM method
The number of ADM terms can vary from 3 up to 10.

2. HAM method
The number of HAM terms is set to 3, but one can adjust the value of the auxiliary parameter ℎ to adjust the
convergence region.

11.5. SAS method options 55

rapid, Release v1.0

56 Chapter 11. Python Files and Functions

CHAPTER

TWELVE

OPTIMAL HOMOTOPY ANALYSIS METHOD

This section illustrates the potential upgrade to the standard HAM method. Notice that this approach is not extensively
implemented in the current toolbox.

Notice that the original HAM provide an additional flexbility with the auxiliary parameter ℎ to adjust and control the
convergence region and rate. This implies that one might seek to find an optimal value of ℎ to improve the performance
of the original HAM. In this case, the optimal value of ℎ might be obtained by minimizing the squared residual error
of governing equations. Let 𝑅(ℎ) denote the square residual error of the governing equation as follows:

𝑅(ℎ) = (𝑁 [𝑥HAM(𝑡)])2

where 𝑥HAM(𝑡) is a semi-analytical solution obtained from the HAM. Then, the optimal value of ℎ is given by solving
the following nonlinear algebraic equation

𝑑𝑅(ℎ)

𝑑ℎ
= 0

To obtain ℎ which satisfies [eq:OHAM1], the following assumptions are made

1. The auxiliary parameter ℎ is distributed to each device.

2. Each device is decoupled from other devices.

3. Consider up to 3 HAM terms.

The main reason is that one wishes [eq:OHAM1] to be a linear equation with only one ℎ variable so that one can just
find an optimal ℎ without iterative methods. If one does not have one of these conditions, then it is not guaranteed. For
example, without 2., [eq:OHAM1] can become nonlinear equation and can have ℎ whose power can be more than 2.
Hence, it becomes complicated and ℎ can be a complex number. Also, without 1., [eq:OHAM1] becomes nonlinear
equation, having ℎ from other devices.

With this setup, the following section describes the procedure to obtain an optimal ℎ for the turbine and governor as an
example.

57

rapid, Release v1.0

12.1 Turbine Model

𝑇𝐻𝐴𝑀𝑚 = 𝑇𝑚,0 + 𝑇𝑚,1 + 𝑇𝑚,2

= 𝑇𝑚,0 + ℎ
[︁

+
1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
∆𝑡ℎ

[︁
+

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
∆𝑡ℎ

[︁
+

1

𝑇𝑐ℎ
𝑇𝑚,0 −

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0

]︁
∆𝑡

+ (1 + ℎ)𝑇𝑚,1 + ℎ
1

2

1

𝑇𝑐ℎ
𝑇𝑚,1∆𝑡(1 + ℎ)𝑇𝑚,1 + ℎ

1

2

1

𝑇𝑐ℎ
𝑇𝑚,1∆𝑡(1 + ℎ)𝑇𝑚,1 + ℎ

1

2

1

𝑇𝑐ℎ
𝑇𝑚,1∆𝑡

= 𝑇𝑚,0 + ℎ
1

𝑇𝑐ℎ
𝑇𝑚,0𝑡− ℎ

1

𝑇𝑐ℎ
𝑃𝑠𝑣,0𝑡

+ (1 + ℎ)ℎ
1

𝑇𝑐ℎ
(𝑇𝑚,0𝑡− 𝑃𝑠𝑣,0𝑡) + ℎ

1

2

1

𝑇𝑐ℎ
ℎ

1

𝑇𝑐ℎ
(𝑇𝑚,0𝑡− 𝑃𝑠𝑣,0𝑡)𝑡

= 𝑇𝑚,0 + ℎ𝑡
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

+ ℎ𝑡
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + ℎ2𝑡

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

+ ℎ2𝑡2
1

2

1

𝑇 2
𝑐ℎ

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

Therefore,

�̇�𝐻𝐴𝑀𝑚 = ℎ
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

+ ℎ
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + ℎ2

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

+ ℎ2𝑡
1

𝑇 2
𝑐ℎ

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

Then, plug into 𝑁(ℎ).

𝑁(ℎ) = �̇�𝐻𝐴𝑀𝑚 − 1

𝑇𝑐ℎ
(−𝑇𝐻𝐴𝑀𝑚 + 𝑃𝑠𝑣,0) = 0

Therefore,

𝑁(ℎ) = ℎ
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + ℎ

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + ...

+
1

𝑇𝑐ℎ
[𝑇𝑚,0 + ℎ𝑡

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + ...− 𝑃𝑠𝑣,0]

Then,

𝑅(ℎ) = [𝑁(ℎ)]2

𝑑𝑅(ℎ)

𝑑ℎ
= 2𝑁(ℎ)

𝑑𝑁(ℎ)

𝑑ℎ

To satisfy 𝑑𝑅(ℎ)
𝑑ℎ = 0, we need to have either 2𝑁(ℎ) = 0 or 𝑑𝑁(ℎ)

𝑑ℎ = 0. Since 𝑁(ℎ) is a quadratic function of ℎ which

58 Chapter 12. Optimal Homotopy Analysis Method

rapid, Release v1.0

implies that ℎ can be a complex number, it is not our interest. So, we want 𝑑𝑁(ℎ)
𝑑ℎ = 0.

𝑑𝑁(ℎ)

𝑑ℎ
=

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) +

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

2ℎ
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + 2ℎ𝑡

1

𝑇 2
𝑐ℎ

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

+
1

𝑇𝑐ℎ

[︁
𝑡

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + 𝑡

1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0)

+ 2ℎ𝑡
1

𝑇𝑐ℎ
(𝑇𝑚,0 − 𝑃𝑠𝑣,0) + ℎ𝑡2

1

𝑇 2
𝑐ℎ

(𝑇𝑚,0 − 𝑃𝑠𝑣,0) − 𝑃𝑠𝑣,0

]︁
= (𝑇𝑚,0 − 𝑃𝑠𝑣,0)

(︁
2

1

𝑇𝑐ℎ
+ 2ℎ

1

𝑇𝑐ℎ
+ 2ℎ𝑡

1

𝑇 2
𝑐ℎ

+ 2
1

𝑇 2
𝑐ℎ

𝑡+ 2ℎ𝑡
1

𝑇 2
𝑐ℎ

+ ℎ𝑡2
1

𝑇 3
𝑐ℎ

)︁
Then,

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)
(︁

2
1

𝑇𝑐ℎ
+ 2ℎ

1

𝑇𝑐ℎ
+ 2ℎ𝑡

1

𝑇 2
𝑐ℎ

+ 2
1

𝑇 2
𝑐ℎ

𝑡+ 2ℎ𝑡
1

𝑇 2
𝑐ℎ

+ ℎ𝑡2
1

𝑇 3
𝑐ℎ

)︁
= 0

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)
(︁
ℎ(2

1

𝑇𝑐ℎ
+ 2𝑡

1

𝑇 2
𝑐ℎ

+ 2𝑡
1

𝑇 2
𝑐ℎ

+ 𝑡2
1

𝑇 3
𝑐ℎ

) + 2
1

𝑇𝑐ℎ
+ 2

1

𝑇 2
𝑐ℎ

𝑡
)︁

= 0

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)ℎ(2
1

𝑇𝑐ℎ
+ 2𝑡

1

𝑇 2
𝑐ℎ

+ 2𝑡
1

𝑇 2
𝑐ℎ

+ 𝑡2
1

𝑇 3
𝑐ℎ

) = −(𝑇𝑚,0 − 𝑃𝑠𝑣,0)(2
1

𝑇𝑐ℎ
+ 2

1

𝑇 2
𝑐ℎ

𝑡)

ℎ =
−(𝑇𝑚,0 − 𝑃𝑠𝑣,0)(2 1

𝑇𝑐ℎ
+ 2 1

𝑇 2
𝑐ℎ
𝑡)

(𝑇𝑚,0 − 𝑃𝑠𝑣,0)(2 1
𝑇𝑐ℎ

+ 2𝑡 1
𝑇 2
𝑐ℎ

+ 2𝑡 1
𝑇 2
𝑐ℎ

+ 𝑡2 1
𝑇 3
𝑐ℎ

)

12.2 Governor Model

𝑃𝐻𝐴𝑀𝑠𝑣 = 𝑃𝑠𝑣,0 + 𝑃𝑠𝑣,1 + 𝑃𝑠𝑣,2

= 𝑃𝑠𝑣,0 + ℎ
[︁

+
1

𝑇𝑠𝑣
𝑃𝑠𝑣,0 −

1

𝑇𝑠𝑣
𝑃𝑐 +

1

𝑇𝑠𝑣

1

𝑅𝐷
𝜔0

]︁
∆𝑡ℎ

[︁
+

1

𝑇𝑠𝑣
𝑃𝑠𝑣,0 −

1

𝑇𝑠𝑣
𝑃𝑐 +

1

𝑇𝑠𝑣

1

𝑅𝐷
𝜔0

]︁
∆𝑡ℎ

[︁
+

1

𝑇𝑠𝑣
𝑃𝑠𝑣,0 −

1

𝑇𝑠𝑣
𝑃𝑐 +

1

𝑇𝑠𝑣

1

𝑅𝐷
𝜔0

]︁
∆𝑡

+ (1 + ℎ)𝑃𝑠𝑣,1 + ℎ
1

2

1

𝑇𝑠𝑣
𝑃𝑠𝑣,1∆𝑡(1 + ℎ)𝑃𝑠𝑣,1 + ℎ

1

2

1

𝑇𝑠𝑣
𝑃𝑠𝑣,1∆𝑡(1 + ℎ)𝑃𝑠𝑣,1 + ℎ

1

2

1

𝑇𝑠𝑣
𝑃𝑠𝑣,1∆𝑡

= 𝑃𝑠𝑣,0 + ℎ
1

𝑇𝑠𝑣
𝑃𝑠𝑣,0𝑡− ℎ

1

𝑇𝑠𝑣
𝑃𝑐𝑡+ ℎ

1

𝑇𝑠𝑣
𝜔0𝑡

+ (1 + ℎ)ℎ
1

𝑇𝑠𝑣
(𝑃𝑠𝑣,0𝑡− 𝑃𝑐𝑡+

1

𝑅𝐷
𝜔0𝑡)

+ ℎ
1

2

1

𝑇𝑠𝑣
ℎ

1

𝑇𝑠𝑣
(𝑃𝑠𝑣,0𝑡− 𝑃𝑐𝑡+

1

𝑅𝐷
𝜔0𝑡)𝑡

= 𝑃𝑠𝑣,0 + ℎ
1

𝑇𝑠𝑣
𝑃𝑠𝑣,0𝑡− ℎ

1

𝑇𝑠𝑣
𝑃𝑐𝑡+ ℎ

1

𝑇𝑠𝑣
𝜔0𝑡

+ ℎ
1

𝑇𝑠𝑣
𝑃𝑠𝑣,0𝑡− ℎ

1

𝑇𝑠𝑣
𝑃𝑐𝑡+ ℎ

1

𝑇𝑠𝑣

1

𝑅𝐷
𝜔0𝑡

+ ℎ2
1

𝑇𝑠𝑣
𝑃𝑠𝑣,0𝑡− ℎ2

1

𝑇𝑠𝑣
𝑃𝑐𝑡+ ℎ2

1

𝑇𝑠𝑣

1

𝑅𝐷
𝜔0𝑡

+ ℎ2
1

2

1

𝑇 2
𝑠𝑣

𝑃𝑠𝑣,0𝑡
2 − ℎ2

1

2

1

𝑇 2
𝑠𝑣

𝑃𝑐𝑡
2 + ℎ2

1

2

1

𝑇 2
𝑠𝑣

1

𝑅𝐷
𝜔0𝑡

2

12.2. Governor Model 59

rapid, Release v1.0

Table 12.1: Description of Sets
Set Description
𝒩 Set of buses in the transmission network
𝒢 Set of generators in the transmission network
ℐ Set of interfaces in the transmission network
𝑐 ∈ 𝒞 Set of transmission connections in network
𝑡 ∈ 𝒯 Set of time periods
ℰ ⊆ ℎ𝑐𝑎𝑙𝑁 ×𝒩 × 𝒞 Set of lines in the transmission network
ℰ𝑖 ⊆ 𝑎𝑡ℎ𝑐𝑎𝑙𝐸 Subset of lines ℰ belonging to interface 𝑖 ∈ ℐ
𝒢𝑖 ∈ 𝒢 Subset of generators 𝒢 at bus 𝑖 ∈ 𝒩

60 Chapter 12. Optimal Homotopy Analysis Method

BIBLIOGRAPHY

[Aub11] Eric Aubanel. Scheduling of tasks in the parareal algorithm. Parallel Computing, 37(3):172–182, March
2011.

[Dan03] P. L. Dandeno. IEEE guide for synchronous generator modeling practices and applications in power system
stability analyses. IEEE Std. 1110-2002, pages 1–72, November 2003.

[DG19] Disha Lagadamane Dinesha and Gurunath Gurrala. Application of multi-stage homotopy analysis method
for power system dynamic simulations. IEEE Trans. Power Syst., 34(3):2251–2260, May 2019.

[DRBW12] J. S. Duan, R. Rach, D. Baleanu, and A. M. Wazwaz. A review of the adomian decomposition method
and its applications to fractional dierential equations. Commun. Fractional Calculus, 3(2):73–99, October
2012.

[G+16] Gurunath Gurrala and others. Parareal in time for fast power system dynamic simulations. IEEE Trans.
Power Syst., 31(3):1820–1830, May 2016.

[G+17] Gurunath Gurrala and others. Large multi-machine power system simulations using multi-stage adomian
decomposition. IEEE Trans. Power Syst., 32(5):3594–3606, September 2017.

[KBL94] P. Kundur, N. Balu, and M. Lauby. Power System Stability and Control. McGraw-Hill, January 1994.

[Lia09] S. Liao. Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci.
Numerical Simulation, 14(4):983–997, April 2009.

[Lia03] Shijun Liao. Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and
Hall/CRC, October 2003.

[Pad02] K. R. Padiyar. Power System Dynamics Stability and Control. Hyderabad, India: B.S. Publications, 2002.

[Pad08] K. R. Padiyar. Power System Dynamics: Stability & Control. BS Publications, 2008.

[ZMST11] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas. Matpower: steady-state operations, planning
and analysis tools for power systems research and education. IEEE Trans. Power Syst., February 2011.

61

rapid, Release v1.0

62 Bibliography

INDEX

H
Home
RAPID, 1

R
RAPID
Home, 1

63

	Installation
	Citing RAPID
	Collaboration
	Data
	Dynamic Data
	Network Data

	Modeling
	Differential Equations
	Synchronous Generator Model 2.2
	Turbine Governor
	IEEE Type-1 Excitation
	Load Dynamic

	Algebraic Equations
	Stator Algebraic Equation
	Network Algebraic Equation
	Load Algebraic Equation

	Dynamic Simulation
	Initial Condition Calculations
	Synchronous Generator Initial Conditions
	Excitation System Initial Conditions
	Governor Initial Conditions
	Turbine Initial Conditions

	Solution Approach

	Parareal Algorithm
	Parareal Implementation
	Understanding of Parareal Algorithm
	para_real.py

	Solution Method
	Standard Numerical Iteration Method
	Midpoint-Trapezoidal Predictor-Corrector
	the Runge-Kutta 4th Order Method

	Semi-Analytical Solution Method
	Adomian Decomposition Method
	The derivation of MADM terms for each device:

	Homotopy Analysis Method
	The derivation of MHAM terms for each device:

	Summary

	Simulation Results
	Validation of Parareal Algorithm
	Results with the New England 10-Generator 39-Bus System
	Results with the Polish System, 327-Generator 2383-Bus

	Acknowledgments
	Python Files and Functions
	Quick Start Guide
	Soution Approach
	Function Descriptions
	Data
	SAS method options

	Optimal Homotopy Analysis Method
	Turbine Model
	Governor Model

	Bibliography
	Index

